Из треугольника AMN можно вычислить, что угол А= 30 (180-60-90=30), тогда катет, который лежит напротив угла 30 град. = половине гипотенузы, то есть MN=1/2 AN, AN=2MN=2*6=12. Так как N середина AB, то AB = 24. Из треугольника AMN tg 60=AM/MN. AM=tg60*MN=6sqrt3 (sqrt-корень) Так как М - середина АС, то АС = 12sqrt3. Рассмотрим треугольник АВС. Угол А=30, значит противоположный катет СВ=половине гипотенузы. CB=1/2AB=12. Рассмотрим треугольник BCM. CM=6sqrt3, CB=12, C=90 градусов. По теореме Пифагора МВ=6sqrt7. Площадь прямоугольного треугольника = 1/2 произведение катетов. S(треугольника AMN)=1/2*6sqrt3*6=18sqrt3
R=34 => d=2R=2*34=68 => AC=68
Треугольник АВС - прямоугольный (<В=90 град), т.к АВСD-прямоугольник, АС=68,
АВ:ВС=8:15 => АВ=8k, BC=15k, k-коэффициент пропорциональности (k>0).
По теореме Пифагора: АВ²+ВС²=АС²
(8k)²+(15k)²=68²
64k²+225k²=4624
289k²=4624
k²=4624:289
k²=16
k=√16
k=4
АВ:ВС=8:15 => BC > AB
BC=15k=15*4=60
ответ: Большая сторона прямоугольника равна 60