1) хорда ba делит окружность на две дуги,одна из которых равна 126,диаметр ab делит окружность на две дуги,одна из которых равна 180,а другая x,наглядно видно,что получается три дуги - одна в 126 градусов,другая - в 180,третья - в x.сумма дуг окружностей равна 360 градусам,т.е 360-180-126=x=54,дуга ac равна 54,а вписанный угол abc равен,как известно,половине дуги,на которую он опирается,т.е угол abc=27. 2) хорда ab делит окружность на две дуги,одна равна 110,а другая - 250,вот эта большая дуга,равная 250,делится точкой c на две дуги - 12x и 13x (всегда можно записать пропорциональность в таком виде,например, в отношении 1/2 - это x и 2x) , т.е 25x=250,x=10,вписанный угол cab опирается на "дугу 13x",т.е на дугу,равную 130 градусам,т.е он равен 65 градусам.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°