Окружность называется описанной вокруг прямоугольного треугольника, в том случае, если все вершины прямоугольного треугольника лежат на этой окружности. Вокруг прямоугольного треугольника можно описать лишь одну окружность.
Формула для радиуса описанной вокруг прямоугольного треугольника окружности:
R = 1/2 * √(a*a + b*b),
где a,b - стороны треугольника.
Следует отметить, что диаметр описанной вокруг прямоугольного треугольника окружности равен гипотенузе прямоугольного треугольника. Значит,надо найти гипотенузу.Сторона ,лежащая против угла в 30 градусов равна половине гипотенузы.Значит ,последняя равна 8 см,а радиус окружности,описанной вокруг этого треугольника равен 4
ответ:100 см²
Объяснение: В четырехугольник можно вписать окружность ( или круг) тогда и только тогда. когда суммы противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
ВС+АD=АВ+AD=14+11=25 (см).
Высота трапеции равна диаметру вписанной окружности. ⇒ ВН=2r=2•4=8
Площадь трапеции равна произведению высоты и полусуммы оснований.
S=h•(a+b)/2=8•25/2=100 см².
----------------------
Как видим, для нахождения площади отношение оснований трапеции является лишним. Но для нахождения длин сторон пригодится.
Примем коэффициент отношения ВС:АD равным а.
Тогда ВС=2а, АD=3а.
ВС+АD=5a=25 (см. выше). ⇒ а=5. ⇒
ВС=2•5=10 см
АD=3•5=15 см.
Окружность называется описанной вокруг прямоугольного треугольника, в том случае, если все вершины прямоугольного треугольника лежат на этой окружности.
Вокруг прямоугольного треугольника можно описать лишь одну окружность.
Формула для радиуса описанной вокруг прямоугольного треугольника окружности:
R = 1/2 * √(a*a + b*b),
где a,b - стороны треугольника.
Следует отметить, что диаметр описанной вокруг прямоугольного треугольника окружности равен гипотенузе прямоугольного треугольника.
Значит,надо найти гипотенузу.Сторона ,лежащая против угла в 30 градусов равна половине гипотенузы.Значит ,последняя равна 8 см,а радиус окружности,описанной вокруг этого треугольника равен 4