S 2. Соотношения между сторонами и углами треугольника 1. Нарисуйте треугольник и обозначьте его вершины.
а) Запишите стороны треугольника в порядке возрастания.
б) Запишите, какой угол соответствует наибольшей стороне треуголь-
ника, и какой наименьшей.
2. Стороны треугольника ABC разны: AB = 5 см, ВС = 13 см и AC = 12 см.
Определите, против какой стороны лежит наибольший угол треугольника,
а против какой
наименьший.
1) АВ = АС, AD = AE, ∠DAE – общий для ΔBAE и ΔCAD => ΔBAE = ΔCAD (по 1-ому признаку равенства Δ-ов)
=> ∠ABE = ∠ACD, ∠AEB = ∠ADC
2) ∠CEB = 180° - ∠AEB, ∠BDC = 180° – ∠ADC => ∠CEB = ∠BDC
3) АВ = АС, AD = AE, CE = AC - AE, BD = AB - AD => CE = BD
4) CE = BD, ∠CEM = ∠BDM, ∠ECM = ∠DBM => ΔCEM = ΔBDM (по 2-ому признаку равенства Δ-ов)
=> DM = EM, BM = CM
5) DM = EM, AE = AD, ∠ADM = ∠AEM => ΔAEM = ΔADM (по 1-ому признакуравенства Δ-ов)
=> ∠AMD = ∠AME
6) ∠AMD = ∠CMO, ∠AME = ∠BMO (т.к. вертикальные углы) => ∠CMO = ∠BMO
7) BM = CM, ∠CMO = ∠BMO, MO – общая для ΔCMO и ΔBMO => ΔCMO = ΔBMO (по 1-ому признаку равенства Δ-ов)
=> BO = CO => AO – медиана ΔABC => AO – высота ΔABC (т.к. ΔABC – равнобедренный) => AO ⊥ BC
Объяснение:
Полное решение прикрепляю.
Идея решения:
1) Сначала, используя основное свойство параллелограмма, находим АС. Напомню это свойство: AC^2 + BD^2 = 2*(AB^2 + AD^2).
2) Рассматриваем треугольник AKB. Из теоремы косинусов:
AB^2 = AK^2 + BK^2 - 2*AK*BK*cosAKB -
выражаем cosAKB.
3) Используем основное тригонометрическое тождество: sin²α + cos²α = 1, - чтобы найти sinAKB. Так как угол AKB меньше 180 градусов, то его синус положительный.
4) Находим площадь параллелограмма через диагонали и угол между ними по формуле: S = 0,5*BD*AC*sinAKB. Вообще, строго говоря, нужно брать острый угол как угол между диагоналями, то есть угол CKB, но так как их синусы равны, то это не имеет значения.
5) Вспоминаем, что диагонали параллелограмма делят его на четыре равновеликих (равных по площади) части, то есть площадь одной такой части будет равна одной четвертой площади параллелограмма. Отсюда площадь треугольника ABK S = Sпар/4.