В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
1) И прямая, и плоскость не имеют строгих определений в геометрии, а определяются через их свойства. У прямой нет "ширины" и "высоты", однако она простирается бесконечно в обе стороны. В строгом смысле слова, прямая - это одномерный аналог пространства. Плоскость имеет уже два бесконечных измерения - "длину" и "ширину", это двумерный аналог пространства.
2) а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек) б) нет в) да
SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК.
Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC.
Тр-ник ВОС равносторонний. СО=ВС=1.
ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2.
В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75.
В тр-ке SMO cosM=OM/SM=√3/(2√3.75).
sin²M=1-cos²M=1-3/15=12/15.
В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5.
В тр-ке СКО sin(КСО)=КО/СО=√15/5.
∠КСО=arcsin√15/5≈50.8° - это ответ.
2)
а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек)
б) нет
в) да