АВСД - ромб , О - точка пересечения диагоналей. Диагонали ромба разбивают его на 4 равных прямоугольных треугольника. Для нахождения второй диагонали рассмотрим ΔАОВ(угол О=90). Пусть по условию АС=32, тогда АО=32:2=16(см)
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону Р=4а 4а=80 а=80:4=20 По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО² ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ ВД=2ВО=24 Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
Рассмотрим вертикальное диаметральное сечение шара. Оно представляет собой окружность радиуса R с центром в точке О (центр шара). Пересечением диаметрального сечения и секущей плоскости является хорда АВ, длиной 2r = 12·2 = 24см. Из центра окружности О опустим на хорду перпендикуляр ОС = h = 5см. Точка С делит хорду АВ пополам. Рассмотрим прямоугольный ΔАОС, в котором ОС = 5см (катет), АС = r = 12см (катет) и гипотенуза ОА = R. Найдём R по теореме Пифагора R² = r² + h² = 12² + 5² = 144 + 25 = 169 R = 13см ответ: радиус шара 13см
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону
Р=4а
4а=80
а=80:4=20
По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО²
ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ
ВД=2ВО=24
Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
r=d1·d2/4а r=32·24/4·20=768/80=9,6
ответ :9,6 см
Рассмотрим прямоугольный ΔАОС, в котором ОС = 5см (катет), АС = r = 12см (катет) и гипотенуза ОА = R.
Найдём R по теореме Пифагора R² = r² + h² = 12² + 5² = 144 + 25 = 169
R = 13см
ответ: радиус шара 13см