Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
извините что то не могу добавить рисунок! треугольники ВОС и АОД подобны где точка о пересечения диагоналей трапеций и кэоффициент подобия равен 34/36 = 17/18 , так как по условию трапеция прямоугольная по тоеоме пифагора обозначим АО за х тогда ОС = 17/18 *х
как известно Высота прямоугольного треугольника -среднее геометрическое между проекциями катетов на гипотенузу,
34^2=x*17/18 *x
x=6√34
значит другая диагональ равна 6√34+6√34*17/18, теперь сами основания
по теореме пифагора нижнее равна
(6√34)^2 +36^2 =√2520
верхнее
34^2+ (6√34*17/18)^2 ~ 2247
что то диагональ какие то может неправильно написали!
извините что то не могу добавить рисунок! треугольники ВОС и АОД подобны где точка о пересечения диагоналей трапеций и кэоффициент подобия равен 34/36 = 17/18 , так как по условию трапеция прямоугольная по тоеоме пифагора обозначим АО за х тогда ОС = 17/18 *х
как известно Высота прямоугольного треугольника -среднее геометрическое между проекциями катетов на гипотенузу,
34^2=x*17/18 *x
x=6√34
значит другая диагональ равна 6√34+6√34*17/18, теперь сами основания
по теореме пифагора нижнее равна
(6√34)^2 +36^2 =√2520
верхнее
34^2+ (6√34*17/18)^2 ~ 2247
что то диагональ какие то может неправильно написали!