Площадь параллелограмма ABCD равна 544 см².
Объяснение:
Требуется найти площадь параллелограмма.
Дано: Окр.О,R; Окр.О₁,R;
ABCD - параллелограмм;
М, Р, Т, Е, Н, К - точки касания.
АВ = 18 см; R = 8 cм.
Найти: S (ABCD)
1.
⇒ МВ = ВР; МА = АК; ТС = ТЕ; ED = DH. (1)
⇒ АВ = CD = 18см.
или
ВМ + МА = СЕ + ЕD = 18 см
Из равенств (1) ⇒
ВР + АК = ТС + НD = 18 см (2)
2. Рассмотрим ΔАОК и ΔО₁ТС.
⇒ ΔАОК и ΔО₁ТС - прямоугольные.
⇒ ∠А = ∠С.
⇒ ∠ОАК = ∠ТСО₁
ОК = ОТ = R
⇒ ΔАОК и ΔО₁ТС (по катету и острому углу)
⇒ АК = ТС (как соответственные элементы).
3. Рассмотрим ΔОВР и ΔHOD.
Аналогично п.2 получим, что ΔОВР = ΔHOD.
⇒ ВР = НD.
4. Перепишем равенство (2)
ВР + АК = ТС + НD = 18 см
или, учитывая п.2 и п.3.:
HD + АК = ВР + ТС = 18 см
5. Рассмотрим КОО₁Н.
ОК = О₁Т = R
⇒ ОК || О₁Т
⇒ КОО₁Н - параллелограмм.
ОО₁ = КН = 2R = 16 см.
6. Найдем высоту и основание параллелограмма.
КР = 2R = 16 см - высота.
AD = AK + HD + KH = 18 + 16 = 34 (см) - основание.
7. Найдем площадь:
S (ABCD) = AD · KP = 34 · 16 = 544 (см²)
Дано:
∠A=45° , ∠C=30° . AD ⊥ BC , AD = 3 м
AB, BC, AC - ?
Из ΔADC(∠ADC=90°) , катет, который лежит против угла 30° равен половине гипотенузы. AC=2AD=2*3=6м
Сумма углов треугольника = 180° . ∠B=180°-(45°+30)°=105°
\begin{gathered}sin105^{\circ}=sin(135^{\circ}-30^{\circ})=sin135^{\circ}cos30^{\circ}-cos135^{\circ}sin30^{\circ}==\frac{\sqrt{2}}{2}*\frac{\sqrt{3} }{2}+\frac{\sqrt{2} }{2}*\frac{1}{2}=\frac{\sqrt{6} }{4}+\frac{\sqrt{2} }{4}=\frac{\sqrt{6}+\sqrt{2}}{4}\end{gathered}
sin105
∘
=sin(135
−30
)=sin135
cos30
−cos135
sin30
=
2
∗
3
+
1
4
6
По теореме синусов найдём BC :
\begin{gathered}\frac{BC}{sin45^{\circ}}=\frac{AC}{sin105^{\circ}}frac{BC}{\frac{\sqrt{2} }{2} }=\frac{6}{\frac{\sqrt{6}+\sqrt{2}}{4}}BC\sqrt{2}=\frac{24}{\sqrt{6}+\sqrt{2}}BC\sqrt{2}=6(\sqrt{6}-\sqrt{2})BC=\frac{6\sqrt{6}-6\sqrt{2}}{\sqrt{2}}=6\sqrt{3}-6\end{gathered}
sin45
BC
AC
24
=6(
−
)
BC=
−6
=6
Найдём AB:
\begin{gathered}\frac{AB}{sin30^{\circ}}=\frac{BC}{sin45^{\circ}}frac{AB}{\frac{1}{2} }=\frac{6\sqrt{3}-6 }{\frac{\sqrt{2} }{2} }2AB=\frac{12\sqrt{3}-12 }{\sqrt{2} }2AB=\frac{2\sqrt{2}(6\sqrt{3}-6)}{2}2AB=6\sqrt{6}-6\sqrt{2}AB=3\sqrt{6}-3\sqrt{2}\end{gathered}
AB
2AB=
12
−12
(6
−6)
2AB=6
AB=3
−3
ответ: AC = 6м , AB = 3\sqrt{6}-3\sqrt{2}3
м , BC = 6\sqrt{3}-66
−6 м
Площадь параллелограмма ABCD равна 544 см².
Объяснение:
Требуется найти площадь параллелограмма.
Дано: Окр.О,R; Окр.О₁,R;
ABCD - параллелограмм;
М, Р, Т, Е, Н, К - точки касания.
АВ = 18 см; R = 8 cм.
Найти: S (ABCD)
Площадь параллелограмма равна произведению основания на высоту.1.
Отрезки касательных к окружности, проведенные из одной точки, равны.⇒ МВ = ВР; МА = АК; ТС = ТЕ; ED = DH. (1)
Противоположные стороны параллелограмма равны.⇒ АВ = CD = 18см.
или
ВМ + МА = СЕ + ЕD = 18 см
Из равенств (1) ⇒
ВР + АК = ТС + НD = 18 см (2)
2. Рассмотрим ΔАОК и ΔО₁ТС.
Радиус, проведенный в точку касания, перпендикулярен касательной.⇒ ΔАОК и ΔО₁ТС - прямоугольные.
Противоположные углы параллелограмма равны.⇒ ∠А = ∠С.
Центр вписанной окружности лежит на биссектрисе угла.⇒ ∠ОАК = ∠ТСО₁
ОК = ОТ = R
⇒ ΔАОК и ΔО₁ТС (по катету и острому углу)
⇒ АК = ТС (как соответственные элементы).
3. Рассмотрим ΔОВР и ΔHOD.
Аналогично п.2 получим, что ΔОВР = ΔHOD.
⇒ ВР = НD.
4. Перепишем равенство (2)
ВР + АК = ТС + НD = 18 см
или, учитывая п.2 и п.3.:
HD + АК = ВР + ТС = 18 см
5. Рассмотрим КОО₁Н.
ОК = О₁Т = R
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ ОК || О₁Т
Если две противоположные стороны четырехугольника равны и параллельны, то этот четырехугольник - параллелограмм.⇒ КОО₁Н - параллелограмм.
ОО₁ = КН = 2R = 16 см.
6. Найдем высоту и основание параллелограмма.
КР = 2R = 16 см - высота.
AD = AK + HD + KH = 18 + 16 = 34 (см) - основание.
7. Найдем площадь:
S (ABCD) = AD · KP = 34 · 16 = 544 (см²)
Площадь параллелограмма ABCD равна 544 см².
Дано:
∠A=45° , ∠C=30° . AD ⊥ BC , AD = 3 м
AB, BC, AC - ?
Из ΔADC(∠ADC=90°) , катет, который лежит против угла 30° равен половине гипотенузы. AC=2AD=2*3=6м
Сумма углов треугольника = 180° . ∠B=180°-(45°+30)°=105°
\begin{gathered}sin105^{\circ}=sin(135^{\circ}-30^{\circ})=sin135^{\circ}cos30^{\circ}-cos135^{\circ}sin30^{\circ}==\frac{\sqrt{2}}{2}*\frac{\sqrt{3} }{2}+\frac{\sqrt{2} }{2}*\frac{1}{2}=\frac{\sqrt{6} }{4}+\frac{\sqrt{2} }{4}=\frac{\sqrt{6}+\sqrt{2}}{4}\end{gathered}
sin105
∘
=sin(135
∘
−30
∘
)=sin135
∘
cos30
∘
−cos135
∘
sin30
∘
=
=
2
2
∗
2
3
+
2
2
∗
2
1
=
4
6
+
4
2
=
4
6
+
2
По теореме синусов найдём BC :
\begin{gathered}\frac{BC}{sin45^{\circ}}=\frac{AC}{sin105^{\circ}}frac{BC}{\frac{\sqrt{2} }{2} }=\frac{6}{\frac{\sqrt{6}+\sqrt{2}}{4}}BC\sqrt{2}=\frac{24}{\sqrt{6}+\sqrt{2}}BC\sqrt{2}=6(\sqrt{6}-\sqrt{2})BC=\frac{6\sqrt{6}-6\sqrt{2}}{\sqrt{2}}=6\sqrt{3}-6\end{gathered}
sin45
∘
BC
=
sin105
∘
AC
2
2
BC
=
4
6
+
2
6
BC
2
=
6
+
2
24
BC
2
=6(
6
−
2
)
BC=
2
6
6
−6
2
=6
3
−6
Найдём AB:
\begin{gathered}\frac{AB}{sin30^{\circ}}=\frac{BC}{sin45^{\circ}}frac{AB}{\frac{1}{2} }=\frac{6\sqrt{3}-6 }{\frac{\sqrt{2} }{2} }2AB=\frac{12\sqrt{3}-12 }{\sqrt{2} }2AB=\frac{2\sqrt{2}(6\sqrt{3}-6)}{2}2AB=6\sqrt{6}-6\sqrt{2}AB=3\sqrt{6}-3\sqrt{2}\end{gathered}
sin30
∘
AB
=
sin45
∘
BC
2
1
AB
=
2
2
6
3
−6
2AB=
2
12
3
−12
2AB=
2
2
2
(6
3
−6)
2AB=6
6
−6
2
AB=3
6
−3
2
ответ: AC = 6м , AB = 3\sqrt{6}-3\sqrt{2}3
6
−3
2
м , BC = 6\sqrt{3}-66
3
−6 м