BOC 24 см, CD = 6 см. Найти периметр параллелограмма ABCD. 2. В равнобедренной трапеции диагональ составляет с боковой стороной угол в 120градусов. Боковая сторона равна меньшему основанию. Найти углы трапеции. 3. В прямоугольной трапеции диагональ перпендикулярна к боковой стороне, острый угол трапеции равен 45градусов . Найдите отношение оснований 4.. ABCD – прямоугольник (Рисунок1), BE ^ АС, АВ = 12 см, АЕ : ЕС = 1 : 3. Найти диагонали прямоугольника. 5. 2. Дано: ABCD – прямоугольник (Рисунок2), СЕ BD, CD = 10 см, DЕ : ОС = 1 : 2. Найти диагонали прямоугольника.
Построим описанную окружность ( О ; R ) около ΔАВС и продолжим прямые АМ и ВН до пересечения с окружностью в точках Р и Е, тогда ВР = ЕС - как хорды, стягивающие равные дуги. Следовательно, ЕСРВ - равнобокая трапеция ⇒ ЕВ || СР. ЕВ⊥АС - по условию ⇒ СР⊥АС. Значит, ∠АСР = 90° ⇒ АР - диаметр окружности. Диаметр окружности делит хорду СВ пополам, соответственно, АР⊥СВ ⇒ ВР = СР = ЕС. Итого, АР⊥СВ, ЕВ⊥АС, но АМ = ВН - по условию ⇒ АР = ВЕ - диаметры окружности, АР∩ВЕ = О - центр окружности. Проводя третий диаметр ТС получаем правильный шестиугольник ATBPCE. Из этого следует, что АВ = ВС = АС - как ме'ньшие диагонали прав. шест-ка ⇒ ΔАВС - равносторонний, что и требовалось доказать.
В остроугольном треугольнике ABC медиана AM равна высоте BH, ∠MAB = ∠HBC. Докажите, что треугольник ABC равносторонний.
Дано: ΔАВС - остроугольный, АМ = ВН, ∠МАВ = ∠НВС, СМ = МВ, ВН⊥АС.
Доказать: ΔАВС - равносторонний.
==========================================================
Построим описанную окружность ( О ; R ) около ΔАВС и продолжим прямые АМ и ВН до пересечения с окружностью в точках Р и Е, тогда ВР = ЕС - как хорды, стягивающие равные дуги. Следовательно, ЕСРВ - равнобокая трапеция ⇒ ЕВ || СР. ЕВ⊥АС - по условию ⇒ СР⊥АС. Значит, ∠АСР = 90° ⇒ АР - диаметр окружности. Диаметр окружности делит хорду СВ пополам, соответственно, АР⊥СВ ⇒ ВР = СР = ЕС. Итого, АР⊥СВ, ЕВ⊥АС, но АМ = ВН - по условию ⇒ АР = ВЕ - диаметры окружности, АР∩ВЕ = О - центр окружности. Проводя третий диаметр ТС получаем правильный шестиугольник ATBPCE. Из этого следует, что АВ = ВС = АС - как ме'ньшие диагонали прав. шест-ка ⇒ ΔАВС - равносторонний, что и требовалось доказать.