По условию задачи CDEF - параллелограмм ⇒ EF║DC ⇒ ∠BEF = ∠BAC, а ∠DFE = ∠ DCA как соответственные при параллельных прямых EF║DC ⇒ ΔEBF подобен ΔАВС по первому признаку подобия.
Теперь мы можем выстроить пропорцию для нахождения BC.
BC/AC = BF / EF
BC/9 = 4/6
BC = 9*4/6 = 6
Теперь мы можем найти FC = ED = ВС - BF = 6-4 = 2
Периметр DEFC = 2 + 2 + 6 + 6 = 16 см
2. Сначала докажем, что ∠АВС и Δ NPB подобны.
По условию задачи NPMK - квадрат. ⇒ ∠ BNP = ∠BAC соответственные при NP║MK. ∠ В общий. ⇒ ∠АВС и Δ NPB подобны по первому признаку подобия.
Теперь используем то, что в подобных треугольниках отношение длин соответствующих элементов подобных треугольников (в частности высот ) равно коэффициенту подобия.
Выразим NP = PK = x, а высоту Δ NPB как 30 - х. Составим пропорцию:
Если на ребрах тетраэдра abcd отмечены точки v (на ребре ab), r (на ребре bd) и t (на ребре cd), а по условию нужно построить сечение тетраэдра плоскостью vrt, то постройте, прежде всего, прямую, по которой плоскость vrt будет пересекаться с плоскостью abc. в данном случае точка v будет общей для плоскостей vrt и abc. 2для того чтобы построить еще одну общую точку, продлите отрезки rt и bc до их пересечения в точке k (данная точка и будет второй общей точкой для плоскостей vrt и abc). из этого следует, что плоскости vrt и abc пересекаться будут по прямой vк. 3в свою очередь прямая vк пересечет ребро ас в точке l. таким образом, четырехугольник vrtl и является искомым сечением тетраэдра, построить которое нужно было по условию . 4обратите внимание на то, что, если прямые rt и bc параллельны, то прямая rt параллельна грани авс, поэтому плоскость vrt пересекает данную грань по прямой vк', которая параллельна прямой rt. а точка l будет точкой пересечения отрезка ас с прямой vк'. сечениететраэдра будет все тем же четырехугольником vrtl. 5допустим, известны следующие исходные данные: точка q находится на боковой грани adb тетраэдра abcd. требуется построить сечение этого тетраэдра, которое бы проходило через точку q и было бы параллельным основанию abc. 6ввиду того, что секущая плоскость параллельна основанию abc, она также будет параллельна прямым ав, вс и ас. а значит, секущая плоскость пересекает боковые грани тетраэдра abcd по прямым, которые параллельны сторонам треугольника-основания авс. 7проведите из точки q прямую параллельно отрезку ав и обозначьте точки пересечения данной прямой с ребрами ad и bd буквами m и n. 8затем через точку m проведите прямую, которая бы проходила параллельно отрезку ас, и обозначьте точку пересечения данной прямой с ребром cd буквой s. треугольник mns и есть искомым сечением.
Объяснение:
1. Сначала докажем, что ΔEBF подобен ΔАВС.
По условию задачи CDEF - параллелограмм ⇒ EF║DC ⇒ ∠BEF = ∠BAC, а ∠DFE = ∠ DCA как соответственные при параллельных прямых EF║DC ⇒ ΔEBF подобен ΔАВС по первому признаку подобия.
Теперь мы можем выстроить пропорцию для нахождения BC.
BC/AC = BF / EF
BC/9 = 4/6
BC = 9*4/6 = 6
Теперь мы можем найти FC = ED = ВС - BF = 6-4 = 2
Периметр DEFC = 2 + 2 + 6 + 6 = 16 см
2. Сначала докажем, что ∠АВС и Δ NPB подобны.
По условию задачи NPMK - квадрат. ⇒ ∠ BNP = ∠BAC соответственные при NP║MK. ∠ В общий. ⇒ ∠АВС и Δ NPB подобны по первому признаку подобия.
Теперь используем то, что в подобных треугольниках отношение длин соответствующих элементов подобных треугольников (в частности высот ) равно коэффициенту подобия.
Выразим NP = PK = x, а высоту Δ NPB как 30 - х. Составим пропорцию:
70/х = 30 / 30-х, отсюда получаем:
2100 - 70х = 30х
2100 = 100х
х = 21