с дано
1. В прямоугольном треугольнике, угол между биссектрисой и высотой, проведенными из вершины прямого угла, равен 150. Найти больший острый угол этого треугольника
2. Определите вид треугольника, если две его стороны равны по / см, а периметр равен 15см. а) равнобедренный б) равносторонний в) разносторонний г) такой треугольник не существует
ответ: Р=32см
Объяснение: обозначим вершины треугольника А В С, а точки касания Д К М, причём Д лежит на АВ; К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и поэтому отрезки касательных соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=4см; АД=АМ=6см; СМ=СК=6см. Из этого следует что АМ=СМ=6см. Теперь найдём стороны треугольника зная длину отрезков:
АВ=ВС=4+6=10см; АС=6+6=12см. Теперь найдём периметр треугольника зная его стороны:
Р=10+10+12=20+12=32см
Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см