1) Если высота Н правильной четырёхугольной призмы равна 2√6 ,а диагональ призмы наклонена к плоскости основания под углом 30°, то диагональ d основания равна: d = H / tg 30° = 2√6 / (1/√3) = 2√18 = 6√2. Сторона а основания равна: a = d*cos 45° = 6√2*(√2/2) = 6. So =a² = 6² = 36. Sбок = РН = 4*6*2√6 = 48√6 кв.ед.
2) Если площадь основания равна 16 м², то сторона а основания равна: а = √16 = 4 м. Высота Н пирамиды равна: Н = (а/2)*tg 60° = 2√3 м. Находим апофему А: А = (а/2) / cos 60° = 2/(1/2) = 4 м. Периметр Р основания равен: Р = 4а = 4*4 = 16 м. Sбок = (1/2)РА = (1/2)16*4 = 32 м².
Проведем через вершину сечение, перпендикулряное стороне основания. В нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из S на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. Нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (Эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.) В этом треугольнике нам задан так же угол в 60 градусов. Далее все очевидноd*cos(60) = a/2; Sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;Sбок = 2*4*16/3 = 128/3 площадь основания в 2 раза меньше (Sбок*cos(60)), это 64/3. А ВСЯ площадь поверхности будет 64.
d = H / tg 30° = 2√6 / (1/√3) = 2√18 = 6√2.
Сторона а основания равна: a = d*cos 45° = 6√2*(√2/2) = 6.
So =a² = 6² = 36.
Sбок = РН = 4*6*2√6 = 48√6 кв.ед.
2) Если площадь основания равна 16 м², то сторона а основания равна:
а = √16 = 4 м.
Высота Н пирамиды равна:
Н = (а/2)*tg 60° = 2√3 м.
Находим апофему А:
А = (а/2) / cos 60° = 2/(1/2) = 4 м.
Периметр Р основания равен: Р = 4а = 4*4 = 16 м.
Sбок = (1/2)РА = (1/2)16*4 = 32 м².