Пусть внешний угол будет смежен с верхним углом треугольника. По свойству внешнего угла (внешний угол равен сумме двух углов несмежных с ним). Т.к треугольник равнобедренный, то оставшиеся углы при основании равны, значит они равны, как 110/2 = 55 градусов - два угла при основании. Верхний угол тогда равен, 180-110=70 градусов.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
Здравствуйте. Решение 1 задачи состоит в знании второго признака подобии треугольников : " Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника " то эти треугольника подобны. В первом треугольника гипотенуза будет равна 5( по теореме Пифагора) . А во втором второй катет будет 8. Как видите все катеты одного треугольника в 2 раза меньше чем у другого треугольника и аналогичная ситуация с гипотенузой. Следовательно, треугольники подобные. Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
ответ: 55,55,70 или 70,70,40
Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.