В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
На рисунке изображена пара смежных углов KSP и HSP. У них сторона SP является общей, а у сторон KS и HS есть общая точка S и они расположены на одной прямой.
Относительно смежных углов рассмотрим основную теорему, согласно которой:
Сумма смежных углов равна 180 градусов.
Доказывается теорема очень легко и просто.
Доказ-во.
Согласно рисунка стороны KS и HS расположены на одной прямой, то есть углы KSP и HSP создают развернутый угол, значение которого в градусах равно 180 градусов. Математически это запишется так:
угол KSP + угол HSP = 180 град.
Теорема доказана.
Из данной теоремы существует следствие:
Из равенства двух углов вытекает равенство смежных к ним углов.
Интересно заметить, что когда пересекаются две прямые, то в результате образуется 4 пары смежных углов.
Рассмотрим рисунок, на котором каждый угол обозначен соответствующей цифрой.
Первая пара – углы 1 и 2
Вторая пара – углы 2 и 4
Третья пара – углы 4 и 3
Четвертая пара – углы 3 и 1
Принято рассматривать только одну из всех этих пар, поскольку углы 1 и 4, а также углы 2 и 3 равны как вертикальные.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
сумма смежных углов=180°
Объяснение:
На рисунке изображена пара смежных углов KSP и HSP. У них сторона SP является общей, а у сторон KS и HS есть общая точка S и они расположены на одной прямой.
Относительно смежных углов рассмотрим основную теорему, согласно которой:
Сумма смежных углов равна 180 градусов.
Доказывается теорема очень легко и просто.
Доказ-во.
Согласно рисунка стороны KS и HS расположены на одной прямой, то есть углы KSP и HSP создают развернутый угол, значение которого в градусах равно 180 градусов. Математически это запишется так:
угол KSP + угол HSP = 180 град.
Теорема доказана.
Из данной теоремы существует следствие:
Из равенства двух углов вытекает равенство смежных к ним углов.
Интересно заметить, что когда пересекаются две прямые, то в результате образуется 4 пары смежных углов.
Рассмотрим рисунок, на котором каждый угол обозначен соответствующей цифрой.
Первая пара – углы 1 и 2
Вторая пара – углы 2 и 4
Третья пара – углы 4 и 3
Четвертая пара – углы 3 и 1
Принято рассматривать только одну из всех этих пар, поскольку углы 1 и 4, а также углы 2 и 3 равны как вертикальные.