5. Могут, если этот угол прямой (рис. 1).
6. 180° · 3 = 540° (решение аналогично задаче в самом верху страницы учебника, только треугольников будет 3, а не 2; рис. 2).
7. Проведем отрезок BC (рис. 3). В любом треугольнике сумма внутренних углов равна 180°.
Тогда для треугольника KBC верно равенство:
∠KBC + ∠KCB + 120° = 180°
∠KBC + ∠KCB = 180° – 120° = 60°.
Для треугольника ABC:
(2x + ∠KBC) + (3x + ∠KCB) + 5x = 180°
(2x + 3x + 5x) + (∠KBC + ∠KCB) = 180°
10x + 60° = 180°
10x = 120°
x = 12°
2x = 24°; 3x = 36°; 5x = 60°
Углы при основании равнобедренного треугольника равны.
Обозначим их х. Так как сумма углов треугольника равна 180°, то угол при вершине равен (180° - 2х).
Теперь рассмотрим 2 случая:
1) угол при основании в 5 раз меньше суммы двух других:
(180° - 2x) + x = 5x
6x = 180°
x = 30°
Тогда угол при вершине:
180° - 2 · 30° = 120°
ответ: 30°, 30°, 120°.
2) угол при вершине в 5 раз меньше суммы двух других:
x + x = 5(180° - 2x)
2x = 900° - 10x
12x = 900°
x = 75°
180° - 2 · 75° = 180° - 150° = 30°
ответ: 75°, 75°, 30°.
5. Могут, если этот угол прямой (рис. 1).
6. 180° · 3 = 540° (решение аналогично задаче в самом верху страницы учебника, только треугольников будет 3, а не 2; рис. 2).
7. Проведем отрезок BC (рис. 3). В любом треугольнике сумма внутренних углов равна 180°.
Тогда для треугольника KBC верно равенство:
∠KBC + ∠KCB + 120° = 180°
∠KBC + ∠KCB = 180° – 120° = 60°.
Для треугольника ABC:
(2x + ∠KBC) + (3x + ∠KCB) + 5x = 180°
(2x + 3x + 5x) + (∠KBC + ∠KCB) = 180°
10x + 60° = 180°
10x = 120°
x = 12°
2x = 24°; 3x = 36°; 5x = 60°
Углы при основании равнобедренного треугольника равны.
Обозначим их х. Так как сумма углов треугольника равна 180°, то угол при вершине равен (180° - 2х).
Теперь рассмотрим 2 случая:
1) угол при основании в 5 раз меньше суммы двух других:
(180° - 2x) + x = 5x
6x = 180°
x = 30°
Тогда угол при вершине:
180° - 2 · 30° = 120°
ответ: 30°, 30°, 120°.
2) угол при вершине в 5 раз меньше суммы двух других:
x + x = 5(180° - 2x)
2x = 900° - 10x
12x = 900°
x = 75°
Тогда угол при вершине:
180° - 2 · 75° = 180° - 150° = 30°
ответ: 75°, 75°, 30°.