2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(
ответ:номер 1
1)BD = AC (дано)
2)BC = AD (дано)
3)BA - Общая строна
следовательно треугольник ABD = треугольнику ACB (ССС)
Следовательно в равных треугольниках все соответсвующие элементы равны.следовательно
угол ADB = углу ACB
номер 2
из дано следует что треугольник MNK р/б,а медиана проведенная к основанию еще является биссектрисой.(биссектриса делит угол на 2 равных)
следовательно медиана делит угол MNK на 2 равных угла,а MNK=120 градусов
следовательно 120:2=60 градусов
ответ:Угол MNC = 60 градусов
номер 3
пусть Xсм - это основание,то x+2 -это две стороны(т.к треугольник р/б)
получаем уровнение
x+x+2+x+2=13,63 x=13,6-2-23x=9,6 x=9,6:3
x=3,2
3,2+2=5,2 см -это две стороны
ответ: 3,2 см ; 5,2 см ; 5,2 см.
номер 4
Если PM=PK, это значит то что точка P расположен в середине угла MAKследовательно AP - биссектриса угла MAKссори если не понятно
параллелепипеде верны следующие равенства:
\begin{gathered}\vec{AB}=\vec{A_1B_1}=\vec{DC}=\vec{D_1C_1}\\\vec{BC}=\vec{B_1C_1}=\vec{AD}=\vec{A_1D_1}\\\vec{AA_1}=\vec{BB_1}=\vec{DD_1}=\vec{CC_1}\\\end{gathered}AB=A1B1=DC=D1C1BC=B1C1=AD=A1D1AA1=BB1=DD1=CC1
следовательно
\begin{gathered}\vec{AB}+\vec{B_1C_1}+\vec{DD_1}+\vec{CD}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DD_1}=\vec{AD_1}vec{BD_1}-\vec{B_1C_1}=\vec{BD_1}-\vec{BC}=\vec{CD_1}\end{gathered}AB+B1C1+DD1+CD=AB+BC+CD+DD1=AD1BD1−B1C1=BD1−BC=CD1
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(