Площадь поперечного сечения трубы это есть площадь круга диаметром данным выше. Решение Надо найти две площади. У меньшей и большей трубы. Площадь круга определяется по формуле S= ПИ *(R^2) Радиус это половина диаметра. S(1)=ПИ*(3.5^2)= 3.14*= 38.48 см2. S(2)=ПИ*(12^2)= 452.38 см2 Теперь найдем площадь поперечного сечения искомой трубы. S=S(1)+S(2)=38.48+452.38=490.86 см2. А нам нужно найти диаметр. Из формулы выше выразим R. R= sqrt(S/ПИ). sqrt- выделение квадратного корня. R=sqrt(490,86/ПИ)=12,5 см. Диаметр это 2R = 2*12,5=25 см
ответ:24,3 см
Объяснение: Дано: EFTM - прямоугольник;
ЕТ=16,2 см; ∠30°.
Найти: Р (ΔEFO)
1. Рассмотрим ΔЕТМ - прямоугольный.
Катет, лежащий против угла 30°, равен половине гипотенузы.
⇒ ТМ = ЕТ : 2 = 16,2 : 2 = 8,1 (см)
Противоположные стороны прямоугольника равны.
⇒ EF = TM = 8,1 см.
Диагонали прямоугольника равны.
⇒ЕТ = FM = 16,2 см.
Диагонали прямоугольника точкой пересечения делятся пополам.
⇒ FO = OE = 16,2 : 2 = 8,1 (см)
Периметр - сумма длин всех сторон.
⇒ Р (ΔEFO) = FO + OE + EF =8,1 +8,1 + 8,1 = 24,3 (см)
Решение
Надо найти две площади. У меньшей и большей трубы. Площадь круга определяется по формуле S= ПИ *(R^2) Радиус это половина диаметра. S(1)=ПИ*(3.5^2)= 3.14*= 38.48 см2. S(2)=ПИ*(12^2)= 452.38 см2
Теперь найдем площадь поперечного сечения искомой трубы. S=S(1)+S(2)=38.48+452.38=490.86 см2. А нам нужно найти диаметр. Из формулы выше выразим R. R= sqrt(S/ПИ). sqrt- выделение квадратного корня. R=sqrt(490,86/ПИ)=12,5 см. Диаметр это 2R = 2*12,5=25 см