Объяснение:Пусть АВСД - данный прямоугольник, точка О - произвольная точка внутри прямоугольника.
Выразим периметр прямоугольника:
Р(АВСД) = (АВ + ВС) * 2 = 24; АВ + ВС = 12.
Проведем четыре перпендикуляра от точки О до сторон прямоугольника:
ОЕ (Е принадлежит ВС), ОМ (М принадлежит СД), ОК (К принадлежит АД и ОР (Р принадлежит АВ).
Сумма расстояний от точки О до сторон прямоугольника будет равна:
ОЕ + ОК + ОМ + ОР.
Так как ОЕ и ОК - два перпендикуляра к параллельным сторонам, проведенные из одной точки, значит, Е и К лежат на одной прямой. Получается, что ЕК параллельно ВС и ЕК = ОЕ + ОК = АВ.
Так как Р и М также являются двумя перпендикулярами в параллельным сторонам, то РМ = ОР + ОМ = ВС.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
Объяснение:Пусть АВСД - данный прямоугольник, точка О - произвольная точка внутри прямоугольника.
Выразим периметр прямоугольника:
Р(АВСД) = (АВ + ВС) * 2 = 24; АВ + ВС = 12.
Проведем четыре перпендикуляра от точки О до сторон прямоугольника:
ОЕ (Е принадлежит ВС), ОМ (М принадлежит СД), ОК (К принадлежит АД и ОР (Р принадлежит АВ).
Сумма расстояний от точки О до сторон прямоугольника будет равна:
ОЕ + ОК + ОМ + ОР.
Так как ОЕ и ОК - два перпендикуляра к параллельным сторонам, проведенные из одной точки, значит, Е и К лежат на одной прямой. Получается, что ЕК параллельно ВС и ЕК = ОЕ + ОК = АВ.
Так как Р и М также являются двумя перпендикулярами в параллельным сторонам, то РМ = ОР + ОМ = ВС.
Следовательно, ОЕ + ОК + ОР + ОМ = АВ + ВС = 12 (см).
ответ: сумма расстояний от точки до прямой равно 12 см.