Объяснение:
Пусть сторона квадрата в гробнице HQ=2х, тогда QN=x.
ΔABC- равносторонний значит высота CH- медиана ⇒HB=75 м.
ΔСНВ- прямоугольный , по т. Пифагора СН=√(150²-75²)=√(150-75)*(150+75)=√(75*225)=75√3≈129,75. Значит CQ=CH-QH=75√3-2x.
ΔCQNподобен ΔCHB по двум углам : ∠С-общий, ∠CQN=∠CHB=90°.
В подобных треугольниках сходственные стороны пропорциональны:
QN:HB=CQ:HC,
х:75=(75√3-2x):75√3
х*75√3=75*(75√3-2x)
х*75√3=75²√3-150x,
х*75√3+150х=75²√3,
х*75*(√3+2)=75²√3,
х=75√3:(√3+2)≈129,75:(1,73+2)=129,75:3,73≈34,7855(м)
Вся сторона квадрата равна 34,7855*2=69,571(м)
В треугольнике АВС угол С=80°. Найдите градусную меру угла АОВ, если О -точка пересечения биссектрис внешних углов треугольника при вершинах А и В.
Ответ: 50°
Объяснение: Сумма внешних углов многоугольника, взятых по одному у каждой вершины, равна 360°.
Внешний угол при С равен 180°-80°=100°. На сумму внешних углов при А и В приходится 360°-100°=260°.
Тогда в треугольнике АОВ сумма углов при вершинах А и В равна половине суммы внешних углов при А и В треугольника АВС, Т.е. ∠ОАВ+∠ОВА=260°:2=130°
Из суммы углов треугольника угол АОВ=180°-130°=50°
Объяснение:
Пусть сторона квадрата в гробнице HQ=2х, тогда QN=x.
ΔABC- равносторонний значит высота CH- медиана ⇒HB=75 м.
ΔСНВ- прямоугольный , по т. Пифагора СН=√(150²-75²)=√(150-75)*(150+75)=√(75*225)=75√3≈129,75. Значит CQ=CH-QH=75√3-2x.
ΔCQNподобен ΔCHB по двум углам : ∠С-общий, ∠CQN=∠CHB=90°.
В подобных треугольниках сходственные стороны пропорциональны:
QN:HB=CQ:HC,
х:75=(75√3-2x):75√3
х*75√3=75*(75√3-2x)
х*75√3=75²√3-150x,
х*75√3+150х=75²√3,
х*75*(√3+2)=75²√3,
х=75√3:(√3+2)≈129,75:(1,73+2)=129,75:3,73≈34,7855(м)
Вся сторона квадрата равна 34,7855*2=69,571(м)
В треугольнике АВС угол С=80°. Найдите градусную меру угла АОВ, если О -точка пересечения биссектрис внешних углов треугольника при вершинах А и В.
Ответ: 50°
Объяснение: Сумма внешних углов многоугольника, взятых по одному у каждой вершины, равна 360°.
Внешний угол при С равен 180°-80°=100°. На сумму внешних углов при А и В приходится 360°-100°=260°.
Тогда в треугольнике АОВ сумма углов при вершинах А и В равна половине суммы внешних углов при А и В треугольника АВС, Т.е. ∠ОАВ+∠ОВА=260°:2=130°
Из суммы углов треугольника угол АОВ=180°-130°=50°