с геометрией
И ещё одно задание
C1Через середину диагонали АС прямоугольника ABCD перпендикулярно этой диагонали проведена прямая, пересекающая стороны ВС и AD в точках К и Е соответственно. Известно, что КЕ = АЕ = 8 см. Найдите большую сторону прямоугольника.
2) Правильный треугольник - это треугольник у которого все стороны равны(равносторонний).
3)У треугольника три биссек.
4)...если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
5)и KM=EG
6) треуг. тупоугольный.
7)Треугольником называется геометрическая фигура состоящая из трех точек не лежащих на одной прямой и трех отрезков, которые соед. эти точки.
8)Квадрат
9)0
10)Если два угла и сторона между ними одного треуг соответ. равны двум углам и стороне между ними другого треуг, то такие треуг равны.
11)E=B
12)треугольник прямоугольный, а два острых угла в сумме дают 90 градусов
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания АN:ВN = 3:4. Примем коэффициент пропорциональности за х.
Тогда АN = 3х, а ВN = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и ОhN.
Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x² = d²-0,25x².
Приведём подобные: 12x² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = √(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
ответ: от отрезка ON откладываем найденный угол AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.