1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Для начала найдем координаты векторов (сторон) и их модули (длины). Вектор |АВ|=√[(Xb-Xa)²+(Yb-Ya)²]= √(0+3²)=3. AB{0;3}. Вектор |АD|=√[(Xd-Xa)²+(Yd-Ya)²]= √(4²+2²)=2√5. AD{4;2}. Вектор |BC|=√[(Xc-Xb)²+(Yc-Yb)²]= √(2²+1²)=√5. BC{2;1}. Вектор |CD|=√[(Xd-Xc)²+(Yd-Yc)²]= √(2²+(-2)²)=2√2. CD{2;1}. Мы видим, что в четырехугольнике нет равных сторон. Проверим их на параллельность (коллинеарность). Два вектора коллинеарны, если отношения их координат равны. Таким образом, вектора ВС и AD - параллельны, то есть четырехугольник - трапеция. Проверим, не прямоугольная ли у нас трапеция. Для этого достаточно проверить углы между боковыми сторонами и основанием - векторами АВ и AD, и DA и DC. Углы между векторами (сторонами) находятся по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". <A - угол между векторами АВ и АD CosA ( = (0+6)/(6√5)=√5/5 ≈ 0,447. <A=arccos(0,447) ≈64°. <D - угол между векторами DA и DC: CosD= (8+(-4))/(4√10)= √10/10 ≈ 0,316. <C=arccos(0,316) ≈72°. Прямых углов нет. Итак, четырехугольник выпуклый и является трапецией. P.S. Для проверки решения сделаем чертеж на координатной плоскости. (см. приложение).
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Вектор |АВ|=√[(Xb-Xa)²+(Yb-Ya)²]= √(0+3²)=3. AB{0;3}.
Вектор |АD|=√[(Xd-Xa)²+(Yd-Ya)²]= √(4²+2²)=2√5. AD{4;2}.
Вектор |BC|=√[(Xc-Xb)²+(Yc-Yb)²]= √(2²+1²)=√5. BC{2;1}.
Вектор |CD|=√[(Xd-Xc)²+(Yd-Yc)²]= √(2²+(-2)²)=2√2. CD{2;1}.
Мы видим, что в четырехугольнике нет равных сторон.
Проверим их на параллельность (коллинеарность).
Два вектора коллинеарны, если отношения их координат равны.
Таким образом, вектора ВС и AD - параллельны, то есть четырехугольник - трапеция.
Проверим, не прямоугольная ли у нас трапеция.
Для этого достаточно проверить углы между боковыми сторонами и основанием - векторами АВ и AD, и DA и DC.
Углы между векторами (сторонами) находятся по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
<A - угол между векторами АВ и АD
CosA ( = (0+6)/(6√5)=√5/5 ≈ 0,447. <A=arccos(0,447) ≈64°.
<D - угол между векторами DA и DC:
CosD= (8+(-4))/(4√10)= √10/10 ≈ 0,316. <C=arccos(0,316) ≈72°.
Прямых углов нет.
Итак, четырехугольник выпуклый и является трапецией.
P.S. Для проверки решения сделаем чертеж на координатной плоскости. (см. приложение).