с геометрией<3 1. Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора.
AB−→−{2;0}.
B(−3;5); A
2. Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{4;6}.
M(−2;−8); N
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол SKО равен 30°.
Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3):
SО=ОК*tg 30=3*1/√3=√3
Площадь основания Sосн=АВ²=6²=36
Объем
V=Sосн*SO/3=36*√3/3=12√3