1)а) Пусть угол С это x, тогда угол В равен 2х, а угол А равен 2х-45. Сумма углов треугольника равна 180 градусам, поэтому: А+В+С=180; х+2х+2х-45=180; 5x=225; x=45, то есть угол С=45. Угол А=2х-45=45; угол В=2х=90. б) тут сравнивать нечего: если углы при основании равны, то и прилежащие стороны равны, и треугольник равнобедренный+прямоугольный. 2) Рассмотрим треугольники MDA и BDK: они равны по двум равным сторонам MD и DK, двум равным углам M и K, угол МАД=ДБК=90 Из этого следует, что АД и ДБ равны. Треугольники АДН и НДБ равны по сторонам АД и ДБ, общей стороне НД и углы ДАН и ДБН равны по 90. И из этого следует, что углы АДН и БДН равны чтд
Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
Сумма углов треугольника равна 180 градусам, поэтому:
А+В+С=180; х+2х+2х-45=180; 5x=225; x=45, то есть угол С=45.
Угол А=2х-45=45; угол В=2х=90.
б) тут сравнивать нечего: если углы при основании равны, то и прилежащие стороны равны, и треугольник равнобедренный+прямоугольный.
2) Рассмотрим треугольники MDA и BDK: они равны по двум равным сторонам MD и DK, двум равным углам M и K, угол МАД=ДБК=90
Из этого следует, что АД и ДБ равны.
Треугольники АДН и НДБ равны по сторонам АД и ДБ, общей стороне НД и углы ДАН и ДБН равны по 90. И из этого следует, что углы АДН и БДН равны чтд
Признаки:
1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
1 признак:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.