Пусть B1 — середина стороны AC треугольника ABC , M — точка пересечения его медиан. На продолжении медианы BB1 за точку B1 отложим отрезок B1K , равный MB1 . Тогда AMCK — параллелограмм, CK = AM . Стороны треугольника KMC составляют 2/3 соответствующих медиан треугольника ABC . Поэтому треугольник KMC подобен треугольнику, стороны которого равны медианам треугольника ABC . Тогда площадь треугольника KMC составляет 4/9 площади треугольника со сторонами 3, 4, 5, т.е. 4/9 * 6 = 8/3. Следовательно, SABC = 6 * SB1MC = 6 * SKMC / 2 = 6 * (8/3) / 2 = 8.
Вариант 1: 2√13 ≈7,21 см..
Вариант 2: 10 см.
Объяснение:
Пусть дан треугольник АВС.
АВ=6√2, ВС=2, R=AC/√2 (дано).
Найти АС.
По теореме синусов: АС/sinB = 2R. => SinB = AC√2/(2AC) (подставили значение R=AC/√2) = √2/2. Значит угол равен 45 градусов и cosB=√2/2. По теореме косинусов:
АС²= АВ²+ВС² - 2АВ*ВС*cosB. Подставляем значения и получаем АС² =72+4 - 24 =52.
АС = √52 = 2√13 см.
Второй вариант:
Угол при вершине В тупой и тогда косинус этого угла отрицательный и равен -√2/2.
АС²= АВ²+ВС² + 2АВ*ВС*cosB = 72+4 + 24 =100.
АC = 10 см.
Проверка:
Вариант 1: АВ≈8,48; ВС=2; АС≈7,21. 8,48 < 7,83+2. Треугольник существует.
Вариант 2: АВ≈8,48; ВС=2; АС=10. 10 < 8,48+2. Треугольник существует.
P.S. CosB можно было найти и по формуле:
cosB=√(1-sin²B).
Пусть B1 — середина стороны AC треугольника ABC ,
M — точка пересечения его медиан.
На продолжении медианы BB1 за точку B1 отложим отрезок B1K , равный MB1 . Тогда AMCK — параллелограмм, CK = AM . Стороны треугольника KMC составляют 2/3 соответствующих медиан треугольника ABC . Поэтому треугольник KMC подобен треугольнику, стороны которого равны медианам треугольника ABC . Тогда площадь треугольника KMC составляет 4/9 площади треугольника со сторонами 3, 4, 5, т.е. 4/9 * 6 = 8/3. Следовательно,
SABC = 6 * SB1MC = 6 * SKMC / 2 = 6 * (8/3) / 2 = 8.