Если рассмотреть площади треугольников АВС и BCD, то нетрудно заметить: S(ABC) = S(ABP) + S(BPC) S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые))) т.е. доказав равенство площадей треугольников АВС и ВСD, мы докажем требуемое треугольники АВС и ВСD имеют общую сторону... если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))), то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))) значит и площади равны...
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...
11 см²
Объяснение:
Точки А₁, В₁ и С₁ середины ребер тетраэдра, значит
А₁В₁ - средняя линия ΔDAB и А₁В₁ = 1/2 АВ,
А₁С₁ - средняя линия ΔDAС и А₁С₁ = 1/2 АС,
В₁С₁ - средняя линия ΔDВС и В₁С₁ = 1/2 ВС,
Т.е. стороны треугольника А₁В₁С₁ пропорциональны сторонам треугольника АВС, значит
ΔА₁В₁С₁ подобен ΔАВС по трем пропорциональным сторонам.
Коэффициент подобия:
k = A₁B₁ / AB = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sa₁b₁c₁ / Sabc = k² = 1/4
Sa₁b₁c₁ = Sabc / 4 = 44 / 4 = 11 см²