PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.
ответ:36 см^2
Объяснение:Пусть сторона основания равна а.
Тогда высота основания h = a*sqrt(3)/2
S = 1/2 *a*a*sqrt(3)/2 = 9*sqrt(3) => a = 6 см
Одно из боковых рёбер пирамиды перпендикулярно снованию.
Его длина M =h*tg(30) = h/sqrt(3) = 3 см
Два других равны между собой, их длины находим из условия:
N^2 =M^2 +a^2 => N = 3*sqrt(5) см
Площадь каждой из перпендикулярных боковых граней:
S1 = 1/2 *M*a = 9 см^2
Высота третьей боковой грани P = 2*N = 6 см
Её площадь S2 = 1/2 *a*P = 18 см^2
Площадь боковой поверхности пирамиды
Sбок = 2*S1 +S2 = 36 см^2
Всё понятно?