Круг можно тремя разрезами разделить на 7 частей: Линия каждого разреза пересекается с двумя другими и получится 3•2 части, плюс часть, которая получится между ними (см. рисунок).
Блин также можно разделить на 7 частей, если его не сворачивать. Если первым разрезом поделить блин пополам, затем наложить одну половину на другую и двумя сквозными пересекающимися разрезами разделить эти половини еще на 4 части , то блин можно разделить на 8 частей.
Так как каравай имеет высоту, можно разделить его таким образом:
Первый разрез провести по высоте - получатся две круглые части.
Затем крестообразно провести еще два разреза от края до края и получить наибольшее количество частей, на которое его можно разделить - 8 частей.
1. Внешний угол тр-ка равен сумме двух не смежных с ним углов. Их отношение друг к другу равно 1:4, то есть они равны Х и 4*Х градусов. Итак Х+4*Х=5*Х=15°. Отсюда Х=3°. Значит наибольший из этих углов равен 3*4=12° 2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°. 3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.
Круг можно тремя разрезами разделить на 7 частей: Линия каждого разреза пересекается с двумя другими и получится 3•2 части, плюс часть, которая получится между ними (см. рисунок).
Блин также можно разделить на 7 частей, если его не сворачивать. Если первым разрезом поделить блин пополам, затем наложить одну половину на другую и двумя сквозными пересекающимися разрезами разделить эти половини еще на 4 части , то блин можно разделить на 8 частей.
Так как каравай имеет высоту, можно разделить его таким образом:
Первый разрез провести по высоте - получатся две круглые части.
Затем крестообразно провести еще два разреза от края до края и получить наибольшее количество частей, на которое его можно разделить - 8 частей.
2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°.
3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.