1 таблетка содержит в себе 20 мг * 0,91 активного вещества ( 0,91 = 91% от всей таблетки) = 18,2 мг т,е в 1 таблетке 20 мг - 18,2 = 1,8 мг вещ-ва узнаем сколько вещ-ва сегодня надо на 8кг => 8* 1,35 = 10,8 а теперь узнаем, сколько нужно таблеток, разделит нужное кол-во вещ-ва, на его кол-во в одной таблетке: 10,8 / 1,8 = 6 получается ответ :6
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, а высота проходит внутри пирамиды, то высота проходит через центр вписанного в основание пирамиды круга. Радиус вписанного в трапецию круга равен половине высоты этой трапеции - основания пирамиды. Высота ВМ трапеции равна боковой стороне, умноженной на синус 45º. h=BM=4√2•√2/2=4 (см) ⇒ ОН=ВМ:2=2 (см) Т.к. высота пирамиды перпендикулярна ее основанию, ∆ КОН - прямоугольный. КО=ОН•tg30º=2:√3 V=S•h:3 В равнобедренную трапецию вписан круг, ⇒ суммы оснований равны сумме боковых сторон, а полусумма оснований равна одной боковой стороне. (свойство) Площадь трапеции S=h•(AD+BC):2=4•4√2=16√2 см² V=¹/₃(16√2)•2:√3=¹/₃•(32√2):√3=32√6:9 см³
Радиус вписанного в трапецию круга равен половине высоты этой трапеции - основания пирамиды.
Высота ВМ трапеции равна боковой стороне, умноженной на синус 45º.
h=BM=4√2•√2/2=4 (см)
⇒ ОН=ВМ:2=2 (см)
Т.к. высота пирамиды перпендикулярна ее основанию, ∆ КОН - прямоугольный. КО=ОН•tg30º=2:√3
V=S•h:3
В равнобедренную трапецию вписан круг, ⇒ суммы оснований равны сумме боковых сторон, а полусумма оснований равна одной боковой стороне. (свойство)
Площадь трапеции S=h•(AD+BC):2=4•4√2=16√2 см²
V=¹/₃(16√2)•2:√3=¹/₃•(32√2):√3=32√6:9 см³