1. У ромба АВСD все стороны равны. Значит каждая сторона = 60 : 4 = 15(см) Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см 2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см. Периметр ABCD=12+12+7+7= 38(см) 3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм. АD=BC=ВМ+МС=9+4=13 дм AD=13 дм
Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
Меньшая диагональ ромба AC делит его на 2 равносторонних треугольника, т.к. АВ=ВС. Угол В=60 градусов, значит углы при основании треугольника АВС =60 градусов каждый (180-60) : 2 =60. Значит треугольник АВС - равносторонний. От сюда следует, что АС=АВ=ВС=15 см
2. В параллелограмме АВСD биссектриса АЕ делит ВС на отрезки ВЕ=7см и ЕС=5см. BC=AD=ВЕ+ЕС=7+5=12(cm) ВС=AD=12см
Треугольник ABC - равнобедренный, т.к. угол ЕАD=углу АЕВ (накрест лежащие углы при параллельных прямых), а угол ВАЕ = углу АЕВ. Значит АВ=7см и DC=7см.
Периметр ABCD=12+12+7+7= 38(см)
3. Треугольник ABC - равнобедренный, т.к. угол BAC = углу АМВ (накрест лежащие углы при параллельных прямых). Значит АВ=ВМ, АВ=СD=9дм, ВМ=9 дм.
АD=BC=ВМ+МС=9+4=13 дм
AD=13 дм
№4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD.
Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны)
Отсюда AP/AM1 = AC1/AB;
8/6 = x/9;
x = 12;