1) a+b = 180 градусов, b = a-40 градусов, a+(a-40) = 180, 2a = 180+40 = 220, a = 220/2 = 110, b=110 - 40 = 70. ответ. 110 градусов. 2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!). Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем. 15*15 = t*9t, 15^2 = 9(t^2) = (3t)^2, 3t = 15; t = 15/3 = 5 см. D = t + 9t = 10t = 10*5 = 50 см. ответ. 50 см.
1. Расстояние от точки (в нашем случае от центра окружности) до прямой - длина перпендикуляра, проведенного из этой точки к прямой. Поэтому строим перпендикулярные отрезки ОМ и ОК, которые будут делить хорды АВ и АС пополам. ОМ=6 см, ОК=10 см по условию. ВМ=МА=ОК=10 см, ВА=ВМ*2=10*2=20 см АК=КС=ОМ=6 см, АС=АК*2=6*2=12 см
2. Треугольники ACD и A1C1D1 равны по первому признаку равенства: две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника. В нашем случае: АС=A1C1 по условию, CD=C1D1 по условию <ACD=ACB+BCD, <A1C1D1=<A1C1B1+B1C1D1, но <ACВ=<A1C1В1 по условию и BCD=B1C1D1 по условию также, значит <ACD=<A1C1D1
3. Pаво=АВ+ОВ+АО Раос= АО+ОС+АС, но ОВ=ОС, т.к. АО - медиана, поэтому периметр треугольника АОС можно записать в виде: Раос=АО+ОВ+АС Раво-Раос=2 - по условию, поэтому запишем: (АВ+ОВ+АО) - (АО+ОВ+АС) = 2 АВ+ОВ+АО-АО-ОВ-АС=2 АВ-АС=2 АВ=2+АС АВ=2+8=10 см
b = a-40 градусов,
a+(a-40) = 180,
2a = 180+40 = 220,
a = 220/2 = 110,
b=110 - 40 = 70.
ответ. 110 градусов.
2) Если хорда перпендикулярна диаметру, то она сама делится пополам этим диаметром (докажи!).
Таким образом отрезки, на которые делится хорда диаметром это 15 см и 15 см. А отрезки, на которые делится диаметр хордой будут, t и (9t). По известной теореме для пересекающихся хорд имеем.
15*15 = t*9t,
15^2 = 9(t^2) = (3t)^2,
3t = 15;
t = 15/3 = 5 см.
D = t + 9t = 10t = 10*5 = 50 см.
ответ. 50 см.
ВМ=МА=ОК=10 см,
ВА=ВМ*2=10*2=20 см
АК=КС=ОМ=6 см,
АС=АК*2=6*2=12 см
2. Треугольники ACD и A1C1D1 равны по первому признаку равенства: две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника. В нашем случае:
АС=A1C1 по условию,
CD=C1D1 по условию
<ACD=ACB+BCD,
<A1C1D1=<A1C1B1+B1C1D1, но
<ACВ=<A1C1В1 по условию и BCD=B1C1D1 по условию также, значит
<ACD=<A1C1D1
3. Pаво=АВ+ОВ+АО
Раос= АО+ОС+АС, но ОВ=ОС, т.к. АО - медиана, поэтому периметр треугольника АОС можно записать в виде:
Раос=АО+ОВ+АС
Раво-Раос=2 - по условию, поэтому запишем:
(АВ+ОВ+АО) - (АО+ОВ+АС) = 2
АВ+ОВ+АО-АО-ОВ-АС=2
АВ-АС=2
АВ=2+АС
АВ=2+8=10 см
4. Зная внешний угол 130°, находим внутренний угол треугольника АВС <A:
<A=180-130=50°
Зная, что сумма углов треугольника равна 180°, находим <B:
<B=180-<C-<A=180-90-50=40°