В условии, очевидно, ошибка: треугольник АВС с такими сторонами не существует, так как любая сторона треугольника меньше суммы двух других сторон, а 6 > 4 + 1.
Эта задача на тему "Подобие треугольников" . Решим ее для ВС = 7 см.
АВ : MK = 4 : 8 = 1/2
AC : MN = 6 : 12 = 1/2
BC : KN = 7 : 14 = 1/2
Значит ΔАВС подобен ΔMKN по трем пропорциональным сторонам.
докажем, что треугольники bmn и lkd- равны, у них:
1) bm=kd по условию
2)mn= lk т.к. mnlk параллелограмм
3) углы bmn и lkd равны, т.к. lmn и lkn равны из-за mnkl- параллелограмм, а bmn и lkd являются смежными для этих двух углов, тоесть тоже равны
дальше докажем, что треугольники ncd и abl равны, у них:
1) al=nc по условию
2) bl= dn т.к. kd=bm по условию, а ml=nk из-за параллелограмма mnkl
3)углы alb и dnc равны, т.к. углы bnm+mnk= dlk+mlk т.к. параллелограмм mnkl и равные треугольники, следовательно смежные этим углам alb и dnc равны
теперь мы знаем, что ab=dc т.к. треугольники abl и ncd равны и bc=ad, т.к. представляют собой сумму сторон bn и nc, al и ld, которые в свою очередь тоже принадлежат равным треугольникам, следовательно abcd- параллелограмм по признаку, где стороны попарно равны
В условии, очевидно, ошибка: треугольник АВС с такими сторонами не существует, так как любая сторона треугольника меньше суммы двух других сторон, а 6 > 4 + 1.
Эта задача на тему "Подобие треугольников" . Решим ее для ВС = 7 см.
АВ : MK = 4 : 8 = 1/2
AC : MN = 6 : 12 = 1/2
BC : KN = 7 : 14 = 1/2
Значит ΔАВС подобен ΔMKN по трем пропорциональным сторонам.
Сумма углов треугольника равна 180°, значит
∠С = 180° - (∠А + ∠В) = 180° - (80° + 60°) = 180° - 140° = 40°
В подобных треугольниках напротив сходственных сторон лежат равные углы:
∠N = ∠С = 40°,
∠K = ∠В = 60°,
∠M = ∠А = 80°.
Объяснение:
Объяснение:
докажем, что треугольники bmn и lkd- равны, у них:
1) bm=kd по условию
2)mn= lk т.к. mnlk параллелограмм
3) углы bmn и lkd равны, т.к. lmn и lkn равны из-за mnkl- параллелограмм, а bmn и lkd являются смежными для этих двух углов, тоесть тоже равны
дальше докажем, что треугольники ncd и abl равны, у них:
1) al=nc по условию
2) bl= dn т.к. kd=bm по условию, а ml=nk из-за параллелограмма mnkl
3)углы alb и dnc равны, т.к. углы bnm+mnk= dlk+mlk т.к. параллелограмм mnkl и равные треугольники, следовательно смежные этим углам alb и dnc равны
теперь мы знаем, что ab=dc т.к. треугольники abl и ncd равны и bc=ad, т.к. представляют собой сумму сторон bn и nc, al и ld, которые в свою очередь тоже принадлежат равным треугольникам, следовательно abcd- параллелограмм по признаку, где стороны попарно равны