с геометрии 9 класса 2. Сторона квадрата ABCD равна 15 см. Если площадь треугольника EFT AB и DFK составляет 18 см: а) обосновать подобие треугольников DFK и EVK; б) Найдите длины DF и FK; в) Укажите, что отношение площадей треугольников EKV и DFK равно (1,5).
ОбъяснениА1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.е:
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.