Поскольку окружность касается осей координат и проходит через точку, расположенную в первой координатной четверти, то центр окружности лежит на прямой y = x. Значит, абсцисса и ордината центра окружности равны её радиусу. Следовательно, уравнение окружности имеет вид (x - R)2 + (y - R)2 = R2. Поскольку точка A(2;1) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению, т.е. (2 - R)2 + (1 - R)2 = R2. Отсюда находим, что R = 1 или R = 5. Следовательно, искомое уравнение имеет вид:
Объяснение:Трапеция АВСД, ВС=х, АД=2х, СД=АД/2=2х/2=х, уголД=60, АВ=6, проводим высоты ВН и СК на АД, треугольник КСД прямоугольный, КД=1/2СД=х/2, СК=СД*sin60=х*корень3/2=ВН, НВСК прямоугольник ВН=СК, ВС=НК=х, АН=АД-НК-КД=2х-х-х/2=х/2, треугольник АВН прямоугольный, АВ в квадрате=АН в квадрате+ВН в квадрате, 36=(х в квадрате/4)+(3*х в квадрате/4), 36=4*х в квадрате/4, х=6=СД, АВСД-равнобокая трапеция, АД=2*6=12, ВС=6, ВН=6*корень3/2=3*корень 3, площадь АВСД=1/2(ВС+АД)*ВН=1/2*(6+12)*3*корень 3=27*корень 3
Поскольку окружность касается осей координат и проходит через точку, расположенную в первой координатной четверти, то центр окружности лежит на прямой y = x. Значит, абсцисса и ордината центра окружности равны её радиусу. Следовательно, уравнение окружности имеет вид (x - R)2 + (y - R)2 = R2. Поскольку точка A(2;1) лежит на окружности, координаты этой точки удовлетворяют полученному уравнению, т.е. (2 - R)2 + (1 - R)2 = R2. Отсюда находим, что R = 1 или R = 5. Следовательно, искомое уравнение имеет вид:
(x - 5)2 + (y - 5)2 = 25 или (x - 1)2 + (y - 1)2 = 1. Решение:(x - 5)2 + (y - 5)2 = 25 или (x - 1)2 + (y - 1)2 = 1.