Обозначим О - центр окружности; АВ - касательная; АС -секущая; СD - внутренний отрезок секущей (рисунок в приложении). По условиям задачи: АВ+АС=30 см AB-CD=2 Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: АВ²=АС*DA Выразим: AC=30-AB CD=AB-2 Пусть АВ=х см, тогда АС=30-х СD=x-2 АС=DA-DC=30-x-x+2=32-2x АВ²=АС*DA=(30-x)*(32-2x) x²=(30-x)*(32-2x) x²=960-32х-60х+2х² 2х²-х²-92х+960=0 х²-92х+960=0 D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68) x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12 АВ=12 см АС=30-АВ=30-12=18 см ответ: касательная равна 12 см, секущая - 18 см.
АВ - касательная;
АС -секущая;
СD - внутренний отрезок секущей (рисунок в приложении).
По условиям задачи:
АВ+АС=30 см
AB-CD=2
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:
АВ²=АС*DA
Выразим:
AC=30-AB
CD=AB-2
Пусть АВ=х см, тогда
АС=30-х
СD=x-2
АС=DA-DC=30-x-x+2=32-2x
АВ²=АС*DA=(30-x)*(32-2x)
x²=(30-x)*(32-2x)
x²=960-32х-60х+2х²
2х²-х²-92х+960=0
х²-92х+960=0
D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68)
x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи
x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12
АВ=12 см
АС=30-АВ=30-12=18 см
ответ: касательная равна 12 см, секущая - 18 см.
Сумма смежных углов равна 180°
∠В и внешний ∠ при вершине В - смежные.
=> ∠В = 180° - 120° = 60°
∠А = ∠С, по свойству равнобедренного треугольника.
180° - 60° = 120° - сумма ∠А и ∠С
∠А = ∠С = 120°/2 = 60°.
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.
Внешний угол треугольника равен сумме двух внутренних углов треугольника несмежных с ним.
=> ∠А + ∠С = 120°
∠А = ∠С, по свойству равнобедренного треугольника.
=> ∠А = ∠С = 120°/2 = 60°
Сумма углов треугольника равна 180°
=> ∠В = 180˚ - (60˚ + 60˚) = 60˚
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.