Условие означает, что половина основания относится к боковой стороне, как 5/12; то есть основание относится к боковой стороне, как 5/6, и равно 50.
на самом деле, эта устная задачка имеет полезное обобщение. Если есть треугольник со сторонами a b c, то биссектриса к стороне c делит её в отношении a/b, то есть - на отрезки ca/(a + b) и cb/(a + b); Поэтому биссектриса к стороне b делит биссектрису к стороне c на отрезки в отношении (считая от вершины C) a/(ca/(a + b)) = (a + b)/c; То есть центр вписанной окружности делит биссектрису в отношении (a + b)/c, где с - сторона, к которой биссектриса проведена. В этой задаче c - основание, BD - биссектриса, и (60 + 60)/c = 12/5; с = 50;
Пусть H – основание перпендикуляра из L на AC, P – на BC. LH=LP. AK=KB=14/2=7 AL=AK+LK=8, BL=AK+LK=6 LH=AL * sin CAB=4 sqrt 2 LP=LH=4*sqrt 2 Sin LBP=LP/BL=2sqrt 2/3 Если P лежит на BC, то угол ABC=угол LBP. Но т. к. sin LBP= 2sqrt 2/3 > sqrt 2/2, то угол ABC > 45 градусов. Тогда угол ACB = 180 – угол CAB – угол АВС < 90 градусов, треугольник тупоугольный. Следовательно, P лежит на продолжении BC, и угол ABC=180 - угол LBP – тупой. Cos ABC =- sqrt (1- sin^2 ABC)=-1/3. Sin ACB = sin (180 – угол CAB – угол АВС) =sin (CAB+ABC)= =sin CAB*cos ABC+cos CAB*sin ABC=sqrt 2/2(-1/3+2sqrt2/3)=(4-sqrt 2)/6
на самом деле, эта устная задачка имеет полезное обобщение.
Если есть треугольник со сторонами a b c, то биссектриса к стороне c делит её в отношении a/b, то есть - на отрезки ca/(a + b) и cb/(a + b);
Поэтому биссектриса к стороне b делит биссектрису к стороне c на отрезки в отношении (считая от вершины C) a/(ca/(a + b)) = (a + b)/c;
То есть центр вписанной окружности делит биссектрису в отношении (a + b)/c, где с - сторона, к которой биссектриса проведена.
В этой задаче c - основание, BD - биссектриса, и (60 + 60)/c = 12/5; с = 50;