С рисунками и подробно ! 1.
Сторона основания правильной четырёхугольной пирамиды равна 12корень2 см, а боковое ребро – 18 см. Найдите площадь диагонального сечения пирамиды.
2.
Задан правильный тетраэдр SABC. Найдите величину двугранного угла при ребре BC.
3.
Задана пирамида SABC, причём основание ABC – прямоугольный треугольник с катетами AB = 6 см и BC = 8 см. Известно, что все двугранные углы при основании пирамиды равны 60°.
а) Поясните, в какую точку проецируется вершина S пирамиды SABC?
б) Найдите площадь полной поверхности пирамиды
Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD.
Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120.
Угол CBD=угол B-угол ABD=120-90=30.
Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB.
Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB.
Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB.
AB=Периметр/5, AB=20/5=4.
AD=2AB=2*4=8
Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
Обобщенная теорема Фалеса:
отрезки, высекаемые параллельными прямыми на одной прямой, пропорциональны отрезкам на другой прямой.
Рассмотрим рисунок, данный во вложении.
Согласно теореме
2:3=7:х
2х=21
х=10,5 см
Обратим внимание на то, что сумма двух отрезков на стороне а равна длине третьего отрезка.
Т.е. 2+3=5.
Согласно т.Фалеса
у=7+х
у=7+10,5=17,5 см
К тому же результату придём, если составим и решим пропорцию
3:5=10,5:у
у=52,5:3=17,5
----------
Добавлю, что задачу можно решить через подобие треугольников отношением их сторон. Только это несколько длиннее.