Точка О-середина оси цилиндра. Диаметр основания цилиндра виден из точки О под прямым углом, а расстояние от точки О до точки окружности основания цилиндра равно 2 см. Вычислите объем цилиндра. Объем цилиндра равен произведению площади его основания на высоту. V=SH Все нужные измерения найдем с т. Пифагора. Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ с катетами АО=ОВ=2 см АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно, радиус основания цилиндра (2√2):2=√2 СО- половина высоты цилиндра СН и равна радиусу основания, т.к. ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, => СО= АС=√2. Высота цилиндра СН =СО*2=2√2 V=SH=π(√2)²*2√2=4π√2 см³
1) Верное, так как точка пересечения биссектрис равноудалена от сторон.
2) В правильном Δ радиус вписанной окружности равен половине радиуса описанной окружности. Центры этих окружностей в этом случае совпадают, одновременно они являются точками пересечения медиан, которые в точке пересечения делятся в отношении 2:1. Один из этих отрезков является радиусом описанной окружности, второй - радиусом вписанной окружности.
3) Верное. В этом случае высота является по совместительству серединным перпендикуляром, а центр описанной окружности лежит в точке пересечения серединных перпендикуляров.
4) Это утверждение верно только для равностороннего Δ, потому что только у такого Δ совпадают центры вписанной и описанной окружностей, а из написанного условия следует, что O - центр описанной окружности.
Объем цилиндра равен произведению площади его основания на высоту.
V=SH
Все нужные измерения найдем с т. Пифагора.
Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ
с катетами АО=ОВ=2 см
АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно,
радиус основания цилиндра (2√2):2=√2
СО- половина высоты цилиндра СН и равна радиусу основания, т.к.
ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, =>
СО= АС=√2.
Высота цилиндра
СН =СО*2=2√2
V=SH=π(√2)²*2√2=4π√2 см³
2) В правильном Δ радиус вписанной окружности равен половине радиуса описанной окружности. Центры этих окружностей в этом случае совпадают, одновременно они являются точками пересечения медиан, которые в точке пересечения делятся в отношении 2:1. Один из этих отрезков является радиусом описанной окружности, второй - радиусом вписанной окружности.
3) Верное. В этом случае высота является по совместительству серединным перпендикуляром, а центр описанной окружности лежит в точке пересечения серединных перпендикуляров.
4) Это утверждение верно только для равностороннего Δ, потому что только у такого Δ совпадают центры вписанной и описанной окружностей, а из написанного условия следует, что O - центр описанной окружности.