ответ:1) Тело, полученное вращением равностороннего треугольника АВС вокруг прямой, проходящей через вершину А, перпендикулярной стороне АВ
2) Тело, полученное вращением тупоугольного равнобедренного треугольника вокруг прямой содержит основание треугольника
3) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащую меньшую боковую сторону
4) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащее большее основание
5) Тело, полученное вращением ромба вокруг прямой, содержащее сторону ромба
Объяснение:
Все задачи решаются через площади треугольников: S(△)=1/2*a*h; S=√p(p-a)(p-b)(p-c); и параллелограмма: S(пар)=a*h
1) S=1/2*16*12=96; с - гипотенуза, с=√(16²+12²)=√(256+144)=20
S=1/2*c*h; h=96*2/20=9.6
2) Если принять, что там дан параллелограмм (в условии этого не сказано, но по-другому я не знаю как решить), то
S(пар)=2*3=6 (через сторону равную 3 и высоту равную 2)
S(пар)=5*h (через другую сторону и искомую высоту) => h=6/5=1.2
3) p=(a+b+c)/2=34
S=√34(34-17)(34-25)(34-26)=√34*17*9*8=204
S=1/2*26*h; h=2*204/26=204/13=15 9/13 (примерно 15,69)
4) a - катет, а=√(25²-20²)=15
S=1/2*15*20=150
S=1/2*25*h; h=2*150/25=12
ответ:1) Тело, полученное вращением равностороннего треугольника АВС вокруг прямой, проходящей через вершину А, перпендикулярной стороне АВ
2) Тело, полученное вращением тупоугольного равнобедренного треугольника вокруг прямой содержит основание треугольника
3) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащую меньшую боковую сторону
4) Тело, полученное вращением прямоугольной трапеции вокруг прямой содержащее большее основание
5) Тело, полученное вращением ромба вокруг прямой, содержащее сторону ромба
Объяснение:
Объяснение:
Все задачи решаются через площади треугольников: S(△)=1/2*a*h; S=√p(p-a)(p-b)(p-c); и параллелограмма: S(пар)=a*h
1) S=1/2*16*12=96; с - гипотенуза, с=√(16²+12²)=√(256+144)=20
S=1/2*c*h; h=96*2/20=9.6
2) Если принять, что там дан параллелограмм (в условии этого не сказано, но по-другому я не знаю как решить), то
S(пар)=2*3=6 (через сторону равную 3 и высоту равную 2)
S(пар)=5*h (через другую сторону и искомую высоту) => h=6/5=1.2
3) p=(a+b+c)/2=34
S=√34(34-17)(34-25)(34-26)=√34*17*9*8=204
S=1/2*26*h; h=2*204/26=204/13=15 9/13 (примерно 15,69)
4) a - катет, а=√(25²-20²)=15
S=1/2*15*20=150
S=1/2*25*h; h=2*150/25=12