Высота, проведенная к основанию равнобедренного треугольника равна квадрату стороны деленная на 2радиуса описанной окружности: h=a^2/2R. Из этой формулы найдем длину стороны АВ треугольника АВС: a^2=2Rh=2*10*16 => a=корень из 320.
Чтобы найти площадь треугольника найдем длину половины основания, а затем и все основание (т к высота в равнобоком треугольнике это и медиана) по теореме пифагора (из прямоугольного треугольника АВЕ) АЕ=корень из 320-16^2=корень из 64=8см, тогда АС=8+8=16см.
Найдем площадь треугольника АВС=1/2*h*a; где h-высота, a-сторона, к которой проведена высота.
Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
Высота, проведенная к основанию равнобедренного треугольника равна квадрату стороны деленная на 2радиуса описанной окружности: h=a^2/2R. Из этой формулы найдем длину стороны АВ треугольника АВС: a^2=2Rh=2*10*16 => a=корень из 320.
Чтобы найти площадь треугольника найдем длину половины основания, а затем и все основание (т к высота в равнобоком треугольнике это и медиана) по теореме пифагора (из прямоугольного треугольника АВЕ) АЕ=корень из 320-16^2=корень из 64=8см, тогда АС=8+8=16см.
Найдем площадь треугольника АВС=1/2*h*a; где h-высота, a-сторона, к которой проведена высота.
S=1/2*16*16=128cм^2
Рисунок во вложении.
Назовем хорду АВ. Через точку В проведем касательную, из точки А проведем перепндикуляр АС к касательной-это и будет расстоянием от А до касательной. Получили прямоугольный треугольник АВС.
Теперь проведем диаметр окружности перпедикулярно хорде АВ. Он будет делить эту хорду пополам. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. Точку пересечения хорды и диаметра назовем К .
Проведем радиус ОВ. Так как ОВ перпендикулярен касательной и АС перпендикулярен касательной, то ОВ//АС. Углы 1 и 2 накрест лежащие, значит они равны.
Рассмотрим треугольники АВС и ВОК: они прямоугольные и имеют по равному острому углу, значит они подобны. Из подобия следует, что ОВ:АВ=АС:ВК => ОВ:12=6:8 => ОВ=9
ответ: 9см.