опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
Проведём в трапеции ABCD высоты BE и CF из тупых углов. Четырехугольник BCFE является прямоугольником (противоположные стороны попарно параллельны, тогда это параллелограмм, то так как есть прямой угол, это прямоугольник), поэтому EF=BC. Известно, что AD-BC=6, тогда AD-EF=6, откуда AE+DF=6. Так как трапеция равнобокая, AE=DF=6/2=3. Рассмотрим треугольник ABE. Он прямоугольный, так как BE - высота трапеции, кроме того, его гипотенуза AB в 2 раза больше катета AE. Значит, угол лежащий против катета AE - угол ABE - равен 30 градусам. Тогда второй острый угол этого треугольника - BAD - равен 90-30=60 градусам. В равнобокой трапеции углы при большем основании равны, тогда угол CDA также равен 60 градусам. Углы при меньшем основании также равны, каждый из них равен 90+30=120 градусам (ABC=ABE+EBC=30+90=120).
по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х²
х²=13²-12²
х²=169-144
х²=25
х=5
т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см)
Площадь трапеции равна: средняя линия*высоту.
Средняя линия равна: (7+17)/2=12(см)
Отсюда площадь равна: 12*12=144 (см²)
ответ: углы равны 60, 60, 120, 120 градусам.