Треугольник ABD равносторонний, следовательно AB=AD=BD=17
Ну или так можно решить:
Все стороны ромба равны, тогда его сторона равна 68 : 4 = 17. Сумма двух углов ромба равна 120°, значит, каждый угол равен 120° : 2 = 60°. Сумма двух остальных углов ромба равна 360° − 120° = 240°, значит, каждый из них равен 240° : 2 = 120°. Меньшая диагональ ромба лежит напротив меньшего угла ромба 60°, поэтому получаем равносторонний треугольник, основанием которого является данная диагональ. Таким образом, меньшая диагональ ромба равен 17
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
P=4AB
4AB=68
AB=17
Угол BAD=BCD=60
Треугольник ABD равносторонний, следовательно AB=AD=BD=17
Ну или так можно решить:
Все стороны ромба равны, тогда его сторона равна 68 : 4 = 17. Сумма двух углов ромба равна 120°, значит, каждый угол равен 120° : 2 = 60°. Сумма двух остальных углов ромба равна 360° − 120° = 240°, значит, каждый из них равен 240° : 2 = 120°. Меньшая диагональ ромба лежит напротив меньшего угла ромба 60°, поэтому получаем равносторонний треугольник, основанием которого является данная диагональ. Таким образом, меньшая диагональ ромба равен 17
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ