Из заданной точки на гипотенузе проведём отрезки, перпендикулярные катетам. Получим 2 подобных прямоугольных треугольника с гипотенузами 30 и 40 и квадрат со стороной "х". Треугольник с гипотенузой 30 имеет один катет "х", а второй обозначим "у". Треугольник с гипотенузой 40 имеет один катет "х", а второй по подобию равен (4/3)х. Найдём соотношение между х и у из подобия треугольников. х/у = ((4/3)х)/х. Отсюда х/у = 4/3 или у = 3х/4. По Пифагору х² + у² = 30². Заменим у на 3х/4: х² + (9х²)/16 = 30², 25х² = 30²*16 или 5²*х² = 30²*4². Отсюда находим х = 30*4/5 = 120/5 = 24. Тогда у = 3*24/4 = 18. Находим катеты: один равен 24 + 18 = 42, второй 24 + 4*24/3 = 24 + 32 = 56.
DC=1/2 AC , тк катет , лежащий против острого угла в 30 град. равен половине гипотенузы . Следовательно DC= 12/2=6 см . Я провела высоту из угла D . Высота делит угол пополам . Рассмотрим треугольник ADW. Угол DAW=30градусов ; угол DWA=90градусов ; а угол WDA =180-(90+30)=60 , значит угол WDC тоже 60, в сумме 120 . Рассмотрим треугольник ADC . Чтобы узнать угол С , надо 180-(120+30)=30градусов . AD=1/2AC , потому что катет , лежащий против угла в 30 градусов равен половине гипотенузы , значит равен 6 см
Треугольник с гипотенузой 30 имеет один катет "х", а второй обозначим "у".
Треугольник с гипотенузой 40 имеет один катет "х", а второй по подобию равен (4/3)х.
Найдём соотношение между х и у из подобия треугольников.
х/у = ((4/3)х)/х. Отсюда х/у = 4/3 или у = 3х/4.
По Пифагору х² + у² = 30².
Заменим у на 3х/4:
х² + (9х²)/16 = 30²,
25х² = 30²*16 или 5²*х² = 30²*4².
Отсюда находим х = 30*4/5 = 120/5 = 24.
Тогда у = 3*24/4 = 18.
Находим катеты:
один равен 24 + 18 = 42, второй 24 + 4*24/3 = 24 + 32 = 56.
Получаем ответ: периметр равен 42 + 56 +70 = 168.