с задачами 1.Дан параллелепипед ABCDA1B1C1D1. Точки K,L,M и N середины сторон AD,BC, B1C1 и A1D1 соответственно. Докажите плоскость KLMNǁABB1A1.
2.Даны параллелограмм ABCD и трапеция ABEK с основанием EK, не лежащие в одной плоскости. Докажите, что AD∸EK.
Объем цилиндра равен произведению площади его основания на высоту.
V=SH
Все нужные измерения найдем с т. Пифагора.
Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ
с катетами АО=ОВ=2 см
АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно,
радиус основания цилиндра (2√2):2=√2
СО- половина высоты цилиндра СН и равна радиусу основания, т.к.
ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, =>
СО= АС=√2.
Высота цилиндра
СН =СО*2=2√2
V=SH=π(√2)²*2√2=4π√2 см³
1)
В параллелограмме (а точнее это будет ромб)
с одной стороны диагонали УГОЛ -90 град - перпендикулярна стороне
с другой стороны от неё же УГОЛ - 45 град -другой стороной образует угол 45 град
значит эта диагональ разделила УГОЛ 90+45=135 град
все -дальше просто - углы по часовой стрелке такие 135 - 45 -135 -45
эта диагональ разбивает параллелограмм на два прямоугольных равнобедренных треугольника
1 сторона параллелограмма катет = 2 см
2 сторона параллелограмма гипотенуза =2*√2 см
2)
главное, что они перпендикулярны
в любом случае это катеты прямоугольного треугольника
вектора a-b и a+b - это гипотенузы
|a-b |= |a+b|=√(3^2+4^2)=√25 = 5