с задачами.
1. В окружности с центром О проведены хорда DC и диаметр DM, угол CMD = 27°. Найдите углы СDM и COD.
+чертеж
2. При пересечении хорды с диаметром окружности хорда делится на отрезки длиной 6 см и 32 см, а диаметр — в отношении 3:4. Найдите радиус окружности.
+чертеж
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ΔABC - равнобедренный;
высота BD = 6,4 см;
AB = BC = 12,8 см.
Найти:∠A = ?°; ∠B = ?°; ∠C = ?°.
Решение:Высота, проведённая к основанию равнобедренного треугольника, является и медианой, и биссектрисой.
⇒ AD = DC, ∠ABD = ∠BDC (по выше указанному свойству).
⇒ ΔABD = ΔCBD (по двум сторонам и углу между ними).
Нам также известно что равные треугольники прямоугольные (высота BD).
Если катет равен половине гипотенузы, то напротив лежащий угол составляет 30°.
Боковые стороны равнобедренного ΔABC - гипотенузы прямоугольных ΔABD и ΔСBD, а высота - общий катет.
Как мы уже отметили, этот общий катет равен половине гипотенузы, так как 6,4 * 2 = 12,8 см. Поэтому ∠A = ∠C = 30°.
Сумма острых углов в прямоугольном треугольнике равна 90°.
⇒ ∠ABD = ∠CBD = 90° - 30° = 60°. ⇒ ∠B = 120°.
ответ: ∠A = ∠C = 30°, ∠B = 120°.