1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри