Произвольный выпуклый четырехугольник d1, d2 — диагонали; — угол между ними; S — площадь.
S =d1d2 sin
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые (как ABCD) и невыпуклые (A1B1C1D1).
d1, d2 — диагонали; — угол между ними; S — площадь.
S =d1d2 sin
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
Две несмежные стороны четырехугольника называются противоположными . Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).
1) тр-к АВС - равнобедренный (АВ=АС), тогда угол С равен углу А и равен 30 градусов. А угол В равен 180-(30+30)=120 градусов.
2) пусть АВ=ВС=х. Тогда по теореме косинусов AC^2=x^2+x^2-2*x*x*cos120=
=2*(x^2)-2*(x^2)*(-1/2)=2*(x^2)+(x^2)=3*(x^2); => 3*(x^2)=16*3; => x^2=16; => x=4.
Итак, АВ=ВС=4 см.
3) Радиус описанной окр-ти вычисляется по формуле: R=(a*b*c)/(4*S).
Найдем площадь тр-ка АВС по формуле Герона:
S=sqrt(p*(p-a)*(p-b)*(p-c))=sqrt((4+2*sqrt(3))*(2*sqrt(3))*(2*sqrt(3))*(4-2*sqrt(3)))=
=sqrt((4+2*sqrt(3))*(4-2*sqrt(3))*(2*sqrt(3))^2)=sqrt((16-12)*12)=sqrt(4*12)=4*sqrt(3).
(здесь полупериметр р=4+2 корня из 3, сстороны 4, 4, 4 корня из 3).
Итак, R=(4*4*4*sqrt(3))/(4*4*sqrt(3))=4 (см).
4) радиус вписанной окр-ти найдем по формуле: r=S/p=(4*sqrt(3))/(4+2*sqrt(3))=
=(2*sqrt(3))/(2+sqrt(3))