1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
Объяснение:
1. За теоремою про вертикальні кути, кут АОВ = куту DOC.
Маємо АОВ = куту DOC, DO=OB, AO=OC, тому трикутник АОВ=COD за першою ознакою рівності трикутників.
2. За теоремою про вертикальні кути, МКN=PKE.
Маємо МКN=PKE, MNK=KPE, NK=KP, тому трикутник KNM=KPE за другою ознакою рівності трикутників.
3. Маємо кут ВАС=DAC, BA=AD, AC - спільна сторона, тому трикутник АСВ=ACD за першою ознакою рівності трикутників.
4. Маємо ВС=АD, CBD=ADB, BD - спільна сторона, тому трикутник BDA=BDC за першою ознакою рівності трикутників.
5. Маємо DFM=DFE, MDF=EDF, DF - спільна сторона, тому трикутник DMF=DEF за другою ознакою рівності трикутників.
6. Маємо МАР=NPA, NAP=MPA, AP - спільна сторона, тому трикутник РМА=ANP за другою ознакою рівності трикутників.
8. Маємо ABD=CDB, ADB=CBD, BD - спільна сторона, тому трикутник ADB=CDB за другою ознакою рівності трикутників.
9. AD=BF, DB - спільна частина, тому AB=DF.
Маємо AB=DF, АВС=EDF, EFD=АСВ, тому трикутник АВС=DFЕ за другою ознакою рівності трикутників.
10. Оскільки кут EBD=DAE, AC=BC, то BD=AE.
Маємо кут EBD=DAE, BD=AE, вертикальні кути рівні(на малюнку немає точки, не можу позначити), то трикутники рівні (немає точки, не можу позначити) за другою ознакою рівності трикутників.