Пусть M – точка пересечения медиан прямоугольного треугольника ABC с катетами AC и BC, P и Q – проекции точки M на AC и BC соответственно,
MP = 3, MQ = 4, K – середина BC.
Поскольку медианы треугольника делятся точкой пересечения в отношении 2 : 1, считая от вершины треугольника, то AC = 3PC = 3MQ = 12, BC = 9. Значит, AB = 15, SABC = ½ AC·BC = 54.
Поскольку высота треугольника ABC, проведённая из вершины прямого угла, равна AC·BC/AB = 36/5, то искомое расстояние равно 12/5.
Также, в равнобедренном треугольнике биссектриса является и медианой и высотой.
Объяснение:
Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Решение
Пусть M – точка пересечения медиан прямоугольного треугольника ABC с катетами AC и BC, P и Q – проекции точки M на AC и BC соответственно,
MP = 3, MQ = 4, K – середина BC.
Поскольку медианы треугольника делятся точкой пересечения в отношении 2 : 1, считая от вершины треугольника, то AC = 3PC = 3MQ = 12, BC = 9. Значит, AB = 15, SABC = ½ AC·BC = 54.
Поскольку высота треугольника ABC, проведённая из вершины прямого угла, равна AC·BC/AB = 36/5, то искомое расстояние равно 12/5.
ответ
12/5.
Дано:
∆ABC-равнобедренный
АС-8 см
BD-биссектриса угла АВС
Найти: AD-?
1) Т.к. ∆ABC равнобедренный, это значит, что углы при основании равны(угол АВС=ВСА)
2) ВD-биссектриса, из этого следует, что угол АВD=DBC(биссектриса делит углы по полам)
3) BD- общая сторона, углы ABD=DBC, ABC=BCA, следовательно, треугольник ABD=BCD(по 2 признаку равенства треугольников)
4) AD=DC(т.к треугольники равны), следовательно, BD-медиана.
5) AD=8:2=4(т.к. медиана делит стороны по полам)
ответ: 4
Также, в равнобедренном треугольнике биссектриса является и медианой и высотой.
Объяснение:
Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.