В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Отрезки касательных из точки вне окружности до точки касания с ней равны. Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. ВК и СМ - биссектрисы равных углов В и С соответственно. Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине. Аналогично СМ пересекает дугу ВС в ее середине. Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.
В 1-м прямая не может пересекать под углом 370°, потому что 360° - это круг
Во 2-м может быть определить углы не по углам, а по сторонам?
Задание 4 вам нужно сделать самостоятельно, просто начертить отрезки данной длины и сформировать треугольник
Объяснение: задание 3
Периметр треугольника- это сумма всех сторон. Поскольку нам не известна длина боковой стороны, тогда мы обозначим её "х". Так как в ∆АВС равнобедренный, то его боковые стороны равны. Составляем уравнение:
х+х+12=30
2х+12=30
2х=30-12
2х=18
х=18÷2
х=9; боковая сторона треугольника АВС=9
ЗАДАНИЕ 5
Рассмотрим ∆АОВ и ∆ВОС. У них:
АВ=ВС, по условиям так как ∆АВС равнобедренный
Сторона ВО - общая
АО= ОС, так как они равноудалены друг от друга и соединяются в одной точке
Угол АВО= углу СВО, так как по условиям из вершины В проведена медиана, которая в равнобедренном треугольнике является биссектрисой и делит угол В пополам.
Треугольники равны по 3- м сторонам и углу.
Задание 6
По свойствам угла 30°, если катет лежит против этого угла, то катет равен половине гипотенузы. Катет АС = половине гипотенузы АВ, из чего делаю заключение, что напротив этого катета расположен угол 30°; угол В =30°. Теперь найдём угол А:
180-90-30=60°. Итак: угол В=30°; угол А=60°
Задание 7
В равнобедренном треугольнике боковые стороны и углы равны - угол А= углуВ, АВ =ВС, также медиана в равнобедренном треугольнике является ещё и биссектрисой, поэтому она разделяет сторону треугольника и угол из которого проведена - пополам АМ=МС, угол АБМ= углуСВМ, и является ещё и высотой, поэтому, разделяя сторону треугольника пополам, она ещё образует в каждом треугольнике прямой угол - угол АМВ= углу СМВ, также сама медиана является общей стороной этих треугольников.
∆АВМ=∆СВМ по трём углам и трём сторонам.
Задание 8
Площадь круга вычисляется по формуле S= πr^; π×4^=3,14×16 =50,24- это площадь круга с радиусом 4 см
S=π× 8^=3,14×64=200,96; это площадь круга с радиусом 8.
Теперь узнаем во сколько раз площадь одного круга больше другого: 200,96÷50,24= 4
ответ: площадь одного круга больше другого в 4 раза
Фото с рисунком ниже
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ.
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.
Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
ВК и СМ - биссектрисы равных углов В и С соответственно.
Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине.
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.