с заданием по геометрии! Определите, лежит ли данная точка на координатной оси. Если да, то укажите эту ось. D(5;0;0), K(6;2;7), T(0;0;3), S(9;7;0), B(0;4;0).
1. Найдем центр отрезка (пускай будет С) здесь и будет центр окружности: Xc = (Xa+Xb)/2 = (-2+7)/2 = 2,5; Yc = (Ya+Yb)/2 = (2+(-7))/2 = -2,5; Итак, центр находится в координатах (2,5;-2,5).
2. Теперь найдем длину радиуса окружности: корень от (Xc-Xa)^2+(Yc-Ya)^2 = корень((2,5+2)^2+(-2,5-2)^2) = 6,364
3. Теперь напишем формулу окружности по формуле (x-a)^2+(y-b)^2 = R^2, где a и b - x и y центра окружности (40,5 - это квадрат радиуса): (y+2,5)^2 = 40,5 - (x-2,5)^2; y^2 + 5y + 6,25 = 40,5 - x^2 + 5x - 6,25; y^2 + 5y - 28 = 5x - x^2
y будет рассчитываться по квадратному уравнению.
Вроде как-то так. По-моему. Рисовать я думаю не буду. Сканера нет. Поставь иголку циркуля на точку (2,5;-2,5), а карандаш в точку по условию (любую) и начерти.
В геометрии есть тождества (формула): sin^2 d+ cos^2 d = 1 1.sin^ d + (24\25)^2 = 1 ; sin^2 d + 576\625 = 1; sin^2 d = 1 - 576\625; sin^2 d = 49\625; sin d = 7\25. 2.Для решения дальше понадобится тождество с тангенсом: tg d = sin d\cos d Синус и косинус нам уже известны, осталось только поделить. tg d= 7\25 :24\25; tg d = 7\24. 3. На рисунке я взяла произвольный угол из двух оставшихся. Разницы нет. Косинус это прилежащяя сторона \ на гипотенузу. Синус это противолежащяя сторона \ на гипотенузу. Выходит что синус равен 12\37.
Xc = (Xa+Xb)/2 = (-2+7)/2 = 2,5;
Yc = (Ya+Yb)/2 = (2+(-7))/2 = -2,5;
Итак, центр находится в координатах (2,5;-2,5).
2. Теперь найдем длину радиуса окружности:
корень от (Xc-Xa)^2+(Yc-Ya)^2 = корень((2,5+2)^2+(-2,5-2)^2) = 6,364
3. Теперь напишем формулу окружности по формуле (x-a)^2+(y-b)^2 = R^2, где a и b - x и y центра окружности (40,5 - это квадрат радиуса):
(y+2,5)^2 = 40,5 - (x-2,5)^2;
y^2 + 5y + 6,25 = 40,5 - x^2 + 5x - 6,25;
y^2 + 5y - 28 = 5x - x^2
y будет рассчитываться по квадратному уравнению.
Вроде как-то так. По-моему. Рисовать я думаю не буду. Сканера нет.
Поставь иголку циркуля на точку (2,5;-2,5), а карандаш в точку по условию (любую) и начерти.
1.sin^ d + (24\25)^2 = 1 ; sin^2 d + 576\625 = 1; sin^2 d = 1 - 576\625; sin^2 d = 49\625; sin d = 7\25.
2.Для решения дальше понадобится тождество с тангенсом: tg d = sin d\cos d
Синус и косинус нам уже известны, осталось только поделить. tg d= 7\25 :24\25; tg d = 7\24.
3. На рисунке я взяла произвольный угол из двух оставшихся. Разницы нет.
Косинус это прилежащяя сторона \ на гипотенузу. Синус это противолежащяя сторона \ на гипотенузу. Выходит что синус равен 12\37.